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Summary: In the last ten years, the application of  neural network models has become an emerging field of  research in the 
field of  hydrology. In the present study, three different neural network models, namely the Multilayer Perceptron (MLP), 
the Jordan net, and the Elman net were used for forecasting water levels at Cuntan station, located at the Yangtze River’s 
upper reaches. The performances of  the neural network models were compared with each other and with the results of  a 
multiple linear regression (MLR) model. As input variables for the models, not only were precipitation data and antecedent 
water levels implemented, but also two climatic variables which are usually left out in the field of  neural network modeling: 
evaporation and snow data. Before the models were adopted, the optimal lead time between the input variables and the 
model output was determined by means of  a cross-correlation analysis. The highly significant correlation between the model 
input and output already indicated a highly linear relationship. Accordingly, the MLR model showed the best performance, 
even though the results of  the other models are only slightly worse. The good capability of  the Jordan net in forecasting 
high water levels should be investigated further. In predicting water levels in general, the integrated snow data improved the 
performance of  the different models only marginally. However, the integration of  evaporation data definitely improved the 
modeling results. 

Zusammenfassung: In den vergangenen zehn Jahren hat die Anwendung neuronaler Netze in der Hydrologie zunehmend 
an Bedeutung gewonnen. In der vorliegenden Studie wurden drei verschiedene neuronale Netzwerkmodelle, namentlich 
das Multilayer Perzeptron, das Jordan- und das Elman-Netz, eingesetzt, um die Wasserstände an der hydrologischen Station 
Cuntan (Yangtze-Oberlauf) zu simulieren. Die erzielte Modellgüte der unterschiedlichen Netztypen wurde sowohl unterei-
nander als auch mit den Ergebnissen eines multiplen linearen Regressionsmodells verglichen. Als Eingangsvariablen wurden 
über die für neuronale Netzwerkmodelle üblichen Eingangsvariablen Niederschlag und Wasserstände der vorherigen Zeit-
schritte hinaus Verdunstungs- und Schneedaten integriert. Bevor die Modelle eingesetzt wurden, wurde mittels einer Kreuz-
korrelationsanalyse der optimale Zeitabstand zwischen den Eingangvariablen und der Modellausgabe berechnet. Die Ergeb-
nisse dieser Korrelationsanalyse zeigen eine hochsignifikante Korrelation und weisen damit auf  eine lineare Relation hin. 
Aufgrund dieser linearen Relation zeigt das multiple lineare Regressionsmodel das beste Resultat, auch wenn die Ergebnisse 
der anderen Modelle nur als geringfügig schlechter einzuordnen sind. Die gute Leistungsfähigkeit des Jordan-Netzes bei der 
Simulation der hohen Wasserstände sollte in zukünftigen Studien vertieft untersucht werden. Bei der Simulation sämtlicher 
Wasserstände konnte durch die Integration der Schneedaten lediglich eine marginale Verbesserung der Modellgüte erzielt 
werden; mit der Implementierung der Verdunstungsdaten hingegen wurde eine deutlichere Verbesserung erreicht.

Keywords: Cross-correlation analysis, neural network analysis, multiple linear regression analysis, water level, China, Yangtze

1 Introduction

During the last decades, large parts of the 
Yangtze River basin have been hit by disastrous 
floods. In the second half of the 20th century ex-
treme floods occurred in 1954, 1981, 1991, 1995, 
1996 and 1998, causing the death of almost 40,000 
persons ( Jiang 2000). These flooding disasters can 
be distinguished into two main types (zHao 1999): 
flooding which affects only a smaller region as in 
1981, 1991, 1995 and 1996; and flooding which hits 

most parts of a river basin as in 1954 and 1998. The 
first type is caused by local rainstorms, whereas 
the second type is produced by regional rainstorms 
which affect tributaries of the upper, middle and 
lower reaches, as well as the main river at the same 
time. 

In general, floods at the Yangtze River are natu-
ral events and have been recorded long before man 
interfered with the hydrological cycle (gemmer 
2004). The main source of floods in the Yangtze 
River basin is long-lasting precipitation during the 
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summer months mainly determined by the strength 
of the monsoon circulation. In years with a weak 
summer monsoon, low wind speeds cause a quasi-
stagnation of the so-called “Meiyu” rain belt in the 
Yangtze River basin, leading to an increased flood 
risk (DomröS and Peng 1988). 

As can be seen above, four of the six heaviest 
flooding disasters during the second half of the 20th 
century occurred in the 1990s. Several studies dealing 
with analyses of precipitation data from the Yangtze 
River basin for this period point towards a concentra-
tion of summer precipitation within a shorter period 
of time (Becker et al. 2003, 2006; gemmer 2004). 
In addition to a significantly decreasing evaporation 
in that region caused by decreasing wind speed as 
well as decreasing radiation (Wang et al. 2007), this 
has led to an aggravation of the flood risk since the 
1990s. Beside these climatic impacts, there are also 
human interventions aggravating the flood situation: 
soil erosion along the Yangtze River’s upper reaches 
mainly caused by inappropriate land use, the regu-
lation of the river course and wetland reclamation 
(king et al. 2001).

Especially the Yangtze River’s middle and 
lower reaches are extremely susceptible to floods, 
which among other reasons is due to the flat relief. 
However, damages caused by floods are not limited 
to these regions, but have also been reported from 
the Sichuan basin, a plane region in the Yangtze 
River’s upper reaches (gemmer 2000; Hartmann 
2002). During the second half of the 20th century, 
the 1981-flood caused the most damages here. This 
region, upstream of the Three Gorges Dam, was of 
interest in the context of this study.

The main aim of the present study was to pre-
dict the water level of the Yangtze River for the 
hydrological station Cuntan, which is located 
about 10 kilometers downstream of the inflow of 
the Jialingjiang by Chongqing city at 106°36’E, 
29°37’N, 165 m a.s.l. (Fig. 1). Hence, it is located in 
the flood prone area of the Sichuan basin. The run-
off measured at Cuntan station is used as a key vari-
able for predicting the inflow into the Three Gorges 
Reservoir by the Bureau of Hydrology, Changjiang 
Water Resources Commission Wuhan (cHen et al. 
2004). This points towards the relevance of an ac-
curate prediction of the water level at this station. 
Figure 2 shows the relationship between water level 
and runoff at Cuntan station.

Due to the fact that deterministic models need 
a very high amount of data, which is difficult to ob-
tain and to handle, especially for a drainage area of 
that size (866,600 km2), the authors decided to use 

a stochastic approach. In the last 10 years, the appli-
cation of neural networks in hydrological modeling 
has become an emerging field of research. Various 
studies mostly dealing with the prediction of run-
off proved the potential of neural network models 
for this purpose (e.g. antar et al. 2006; cigizogLu 
2003; DiBike and SoLomatine 2001). However, 
there still is a need for more inter-model compari-
sons and rigorous assessment of neural network 
solutions versus traditional hydrological methods 
(DaWSon and WiLBy 2001) including deterministic 
as well as stochastic approaches. Therefore, in the 
present study three different neural network mod-
els were applied for forecasting water levels: the 
multilayer perceptron (MLP), the Jordan net, and 
the Elman net. The performances of the neural net-
work models were compared with each other and 
also with the outcomes of a multiple linear regres-
sion (MLR) model.

Predicting water levels at the Yangtze River 
was the last step carried out in the context of the 
project “Teleconnections and their relevance for 
precipitation patterns in China: time series analy-
ses as a base for an improved flood management in 
the Yangtze River basin,” funded by the German 
Research Foundation (DFG). During this project, 
analyses of the climatic variability of different cli-
matic factors as well as medium and long-term pre-
dictions of precipitation were undertaken (Becker 
et al. 2007, 2008; Hartmann et al. 2008a, 2008b; 
Wang et al. 2007; zHang et al. 2007). The last 
step was to analyze the relation between rainfall 
and water levels in the Yangtze River basin and, 
through this, to extend the prewarning time for 
a flood.

2 Data

All data series used in the present study con-
sist of daily averages or totals and cover the period 
from January 1, 1961 to December 31, 2000. 

We started our analyses using precipitation 
time series of 41 climate stations located upstream 
of Cuntan hydrological station, either along the 
Yangtze River or along its tributaries, as potential 
input variables (predictors) for the models.

The data were provided by the National 
Climatic Centre (NCC) of the China Meteorological 
Administration (CMA), Beijing, P.R. China. The ho-
mogeneity of the precipitation data was confirmed 
in a previous study by Becker et al. (2008). The lo-
cation of the climate stations is shown in figure 1.
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In addition, we integrated two further climatic 
variables as predictors into the models, which are 
usually left out in the field of neural network mod-
eling; these are evaporation and snow water equiv-
alent. Even though it is common knowledge that 
both are key variables in the water cycle, there are 
only very few studies in which they were used as in-
put for neural network analyses. An example for us-
ing evaporation data for forecasting runoff by neu-
ral networks is a study by DiBike and SoLomatine 
(2001). Snow data were implemented for predicting 
runoff by niLSSon et al. (2006). 

Due to difficulties in assessing observational 
data of evaporation and snow we used potential 
evaporation rate and water equivalent of snow 
depth from NCEP/NCAR Reanalysis 1 (kiStLer et 
al. 2001), provided by the NOAA/OAR/ESRL PSD, 
Boulder, Colorado, USA from their Web site at 
http://www.cdc.noaa.gov. The location of the grid 
cells of potential evaporation rate (PER) and of wa-
ter equivalent of snow depth (WESD), which were 
selected for this study, can be taken from figure 3.

The output variable of our analyses was wa-
ter level from Cuntan station located at the upper 
reaches of the Yangtze River. The hydrological 
data (water level and runoff, the latter only used 
in figure 2) was provided by the Changjiang Water 
Ressources Commission. The hydrological time se-

ries were plotted and visually controlled for outliers; 
no corrections were necessary. As proven in several 
studies (DiBike and SoLomatine 2001; DaWSon et 
al. 2002; minnS and HaLL 2004), the use of previ-
ous output variables (in this case, previous water 
level values) as part of the input pattern, usually im-
proves the performance of a neural network model. 
Therefore, antecedent water levels at Cuntan station 
were also used as input variables.

Fig. 1: Location of  the 41 climate stations and the hydrological station Cuntan

Fig. 2: Relationship between water level and runoff  at the 
hydrological station Cuntan
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3 Methodology

In order to reduce the number of input variables 
while retaining most of the information contained in 
the original data set, a principal component analysis 
(PCA) was carried out on the 26 grid cells of PER. 
The central idea of PCA is to reduce the dimension-
ality of a data set which consists of a large number of 
correlated variables, while retaining as much of the 
variance of the data set as possible. This is achieved 
by a transformation to a new set of variables, the so-
called principal components (PCs), that are uncor-
related and ordered so that the first few retain most 
of the variance present in all of the original variables 
(JoLLiffe 1986). Like in Hartmann et al. (2008a) a 
varimax rotation of the PCs was applied. “Varimax” 
stands for “variance maximizing”; “varimax rota-
tion” means that the criterion for the rotation is to 
maximize the variance of the PC, while minimizing 
the variance around this PC (STATSOFT 2007). 

Subsequently, the values of the 18 grid cells of 
WESD were summed up to one time series. 

In order to determine the optimal lead time 
between the input variables and the model output, 
cross-correlation coefficients between all of  the in-
put variables and the output variable were calculat-
ed. According to Long et al. (2006), a lead time of  

about 4 weeks for the precipitation series recorded 
in western China was expected. Therefore lead times 
between 0 and 40 days were tested. 

Further data preprocessing included stand-
ardizing the time series, which were used as input 
variables. The time series were rescaled to the in-
terval [0.1, 0.9] to enable the modeling of  extreme 
events occurring outside the range of  the training 
data (DaWSon and WiLBy 2001). Then, the data was 
split into three data sets: one for training (80% of  
the data), one for cross validation (10% of  the data), 
and one for testing (10% of  the data). As the terms 
“cross validation” and “testing” are used differently 
in various studies, the use of  these terms is defined 
in the following. 

In this study, the term “cross validation” de-
scribes the procedure of  avoiding overfitting by de-
termining when the network has been trained as well 
as possible. The cross validation data set is used by 
the network during training. At regular intervals, dur-
ing training the training data set, the network perfor-
mance is tested on the cross validation set. During 
this testing, the performance of  the network on the 
cross validation set is saved and compared to past 
values. If  the network is starting to overtrain on the 
training data, the cross validation performance will 
begin to degrade and the training procedure will be 

Fig. 3: Location of the selected grid cells of potential evaporation rate (PER) and water equivalent of snow depth (WESD)



235H. Hartmann et al.: Forecasting water levels at the Yangtze River with neural networks 2008

stopped (PrinciPe et al. 2005). This definition of  
“cross validation” was also used, e.g. by couLiBaLy 
et al. (2000), kang et al. (2006) and SentHiL kumar 
et al. (2005). Instead of  “cross validation”, DaWSon 
and WiLBy (2001) and DaWSon et al. (2002) used the 
term “testing”; in ASCE (2000) this procedure was 
named “cross training”.

We use the term “testing” for evaluating the cho-
sen model against independent data, as was done in 
various other studies, such as BackHauS et al. (2003), 
PrinciPe et al. (2005), and cigizogLu (2003). What 
is meant by “testing” in this study, was sometimes 
expressed by the term “validation” (ASCE 2000; 
DaWSon and WiLBy 2001; DaWSon et al. 2002) in the 
field of hydrology. 

The training data set covers the time periods 
from 1961 to 1967, 1970 to 1977, 1980 to 1987, 1990 
to 1997, and the year 2000. For the cross validation 
data set, the following years were selected: 1969, 
1979, 1989, and 1999. The test data set consists of the 
years 1968, 1978, 1988, and 1998. It was one aim to 
test the model performance for the year 1998, which 
is known for its severe flooding in the Yangtze River 
basin. Even though the water level at Cuntan station 
did not reach an extreme value in that year, it would 
have been extremely beneficial if it had been forecast 
accurately. 

The authors decided to use neural network mod-
els for predicting water levels at Cuntan station due 
to the fact that these enable the modeling of even 
nonlinear relationships. This decision was also due 
to the positive results gained by the application of 
neural networks in the field of hydrological model-
ing (e.g. antar et al. 2006; cigizogLu 2003; DiBike 
and SoLomatine 2001). Neural networks are parallel 
computing structures of processing elements (neu-
rons), which are interconnected by a network similar 
to the human brain (HSieH and tang 1998). Three 
different neural network models were used in this 
study: the MLP, the Jordan net, and the Elman net. 
The performances of the neural network models 
were compared with each other as well as with the 
outcomes of a MLR model. Two of the neural net-
work models, namely the Jordan and Elman nets, 
have been rarely used in the field of hydrology until 
now. Therefore, the authors were interested in evalu-
ating their performances.

At first, a conventional MLP neural network 
design was applied, which is overwhelmingly fa-
voured in the field of hydrology (minnS and HaLL 
2004). A MLP is a so-called “feed-forward” neural 
network because all information flows in one direc-
tion. The neurons of one layer are connected with 

the neurons of the following layer without feedback 
(teScHL and ranDeu 2006). The weights adjustment 
was performed by the error backpropagation learn-
ing algorithm: weights are modified to reduce the er-
ror occurrence between actual and desired network 
outputs backward from the output layer to the input 
layer (BackHauS et al. 2003).

Then, the Jordan and Elman networks were used 
to forecast the water levels at Cuntan station. Both 
networks extend the MLP with context units, which 
are neurons that remember past activity (PrinciPe et 
al. 2005). 

Until now, the Jordan net has been applied in the 
field of hydrology in only one study (VarooncHotikuL 
2003). The Jordan net belongs to the partial recur-
rent networks, which stand for a net in which con-
nections between neurons feed backwards through 
the network as well as forwards (DaWSon and WiLBy 
2001). The Jordan net makes use of its output from 
the output layer to train the network by feeding 
this, via the context units, back to the hidden layer 
(geitH 2006). Due to the fact that the modifiable 
connections are all feed-forward, it was possible to 
carry out the weights adjustment by the error back-
propagation learning algorithm as described above 
(VarooncHotikuL 2003). 

Like the Jordan net, the Elman net belongs to the 
partial recurrent networks. In the case of the Elman 
net, however, the hidden layer is not only connected 
to the output layer, but also to the context units. The 
output of these context units is also inputted to the 
hidden layer (cruSe 2006). Again, the weights adjust-
ment was performed by the error backpropagation 
learning algorithm.

The architecture of a neural network is often 
determined by a “trial and error” approach. In this 
study, the number of hidden neurons is in a first step 
determined based on the following formula given by 
Han et al. (2007):

Thus, at first the performances of the different 
neural networks with 1 hidden layer and 32 neurons 
were evaluated. Secondly, further trials with less and 
more neurons were conducted, which outperformed 
the 32 neurons architecture. For the MLP and the 
Elman net, 16 neurons architectures were most suc-
cessful; and for the Jordan net, a 20 neurons archi-
tecture showed the best performance. Thirdly, the 
performance of two hidden layers was tested for all 
the neural network models; however, no improve-

(1)
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ment was achieved. Thus, for the MLP and the 
Elman net, one hidden layer and 16 neurons were 
used; and one hidden layer and 20 neurons were used 
for the Jordan net.

Finally, a multiple linear regression analysis was 
carried out and the performance of this analysis 
was compared with the results from the neural net-
work models.

When evaluating hydrological model skill, it 
is important to apply multiple error measures due 
to different sensitivities (DaWSon and WiLBy 2001, 
2004). In this study, the performance of the dif-
ferent models was assessed, calculating the coef-
ficient of determination r2 (DaWSon and WiLBy 
2001), the root mean squared error RMSE (DaWSon 
et al. 2002), and the maximum absolute error MAE 
(DaWSon and WiLBy 2001) (see equations 2, 3, 4 
respectively):

PER extracted from the grid cells, the first three 
rotated PC scores were used as input variables for 
the models.

4.2 Cross-correlation analysis

The results from a cross-correlation analysis be-
tween the 41 precipitation time series from climate 
stations along the Yangtze River’s upper reaches and 
water level at Cuntan station show a highly signifi-
cant correlation with a lead time of more than 20 
days for the climate stations located in the western 
Yangtze River basin (Tab. 2). The precipitation time 
series recorded at these stations are perfectly suited 
for a prediction up to 4 weeks in advance. The sta-
tions located along the Yalong River are also well 
suited for forecasting water levels at Cuntan station: 
the precipitation series recorded at the Yalong’s up-
per reaches show a lead time of 28 days reducing to 
13 days at its lower reaches. The precipitation series 
from all stations located east of the Yalong subba-
sin are far less suitable for a prediction several days 
ahead. All of these series show the highest correlation 
with a lead time of 0 days. This is easy to understand 
for climate stations which are located in the sur-
rounding area of Cuntan station, such as the climate 
station in Chongqing. However, it is remarkable that 
the precipitation series from all the stations along the 
Daduhe and the Minjiang (Fig. 1), even though some 
of them are located in a distance of more than 700 
km to Cuntan station, show the highest correlation 
coefficients for a lead time of 0 days and lower coef-
ficients for the following days. A shorter lead time 
would probably improve the modeling results, as 
the correlation is decreasing with an increase of the 
time lag. However, a shorter lead time would limit 
the effectiveness of forecasting, especially of flood 
forecasting. The prewarning time should be as long 
as possible and, therefore, we decided to implement 
these variables with the smallest lead time used for 
the other variables (8 days also used for the precipita-
tion series recorded at station 566840) and not with 
a shorter one. 

(2)

(3)

(4)

no. PCs variance (%) cumulative 
variance (%)

1 35.503 35.503
2 31.745 67.248
3 12.984 80.231

Table 1: Percentages of variance explained by the first three ro-
tated principal components (PCs) of potential evaporation rate

where     are the n observed flows,     is the mean of 
the observed flows,     are the n modeled flows and
     is the mean of the modeled flows.

4 Results

4.1 Principal component analysis

The first three rotated PCs explain altogether 
80.2% of the total variance of the PER. Almost 
68% of the total variance is explained by the first 
two rotated PCs. More detailed information is 
given in table 1. Instead of the 26 time series of 
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water level at Cuntan lead time (in days)

precipitation at station 529080 0.341144762 28
precipitation at station 560040 0.34003522 28
precipitation at station 560290 0.376949779 28
precipitation at station 560340 0.366051103 28
precipitation at station 560380 0.385310392 28
precipitation at station 561440 0.389259388 21
precipitation at station 561460 0.337415959 16
precipitation at station 561520 0.382144679 23
precipitation at station 561670 0.361121175 14
precipitation at station 561720 0.33807216 8
precipitation at station 561780 0.309645678 8
precipitation at station 561820 0.280388451 8
precipitation at station 561880 0.231793952 8
precipitation at station 561960 0.212221586 8
precipitation at station 562510 0.380773134 14
precipitation at station 562870 0.250333042 8
precipitation at station 562940 0.239573904 8
precipitation at station 563850 0.282112538 8
precipitation at station 563860 0.216809994 8
precipitation at station 564590 0.395052876 13
precipitation at station 564620 0.385261903 13
precipitation at station 564750 0.32683727 8
precipitation at station 564850 0.259137675 8
precipitation at station 564920 0.217523803 8
precipitation at station 565430 0.315674122 16
precipitation at station 565650 0.357991832 8
precipitation at station 565710 0.296671749 13
precipitation at station 566510 0.366188397 16
precipitation at station 566710 0.307176003 13
precipitation at station 566840 0.26687519 8
precipitation at station 572370 0.200322393 8
precipitation at station 573060 0.187983928 8
precipitation at station 573130 0.179870787 8
precipitation at station 574050 0.193171183 8
precipitation at station 574110 0.187794676 8
precipitation at station 575040 0.20521343 8
precipitation at station 575160 0.185519676 8
precipitation at station 576020 0.19402136 8
precipitation at station 576060 0.207358222 8
precipitation at station 576080 0.188463728 8
precipitation at station 576140 0.200598774 8
potential evaporation rate principal 
component (PC)1 0.679490611 28
potential evaporation rate PC2 -0.30191028 28
potential evaporation rate PC3 0.147839727 28
water equivalent of  snow depth -0.547433978 27
antecedent water level at Cuntan 0.874343601 8

Table 2: Correlation coefficients and lead time between the input variables and observed water levels
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The PC scores of PER show a highly significant 
correlation with a self-evidently longer lead time, 
which is determined at 28 days. As WESD shows a 
higher (negative) correlation with a lead time of 27 
days, the variable was chosen to be integrated into 
the models with that lead time. The negative correla-
tion is due to high amounts of WESD in winter and 
low or 0 values in summer, whereas the water level 
show peaks in summer and minima in winter. Due 
to the above named reasons, the last input variable, 
antecedent water levels at Cuntan station, was also 
implemented into the models with a lead time of 8 
days. 

Table 2 gives an overview of the correlation co-
efficients and lead time between the input variables 
and the observed water levels.

4.3 Neural network and multiple linear regres-
sion models

Table 3 provides a summary of the modeling 
results for the testing, training, and cross validation 
periods achieved by the application of the different 
models. It can be concluded that the results of the 
different models are similar. Regarding all the per-
formance measures, the MLR shows the best result, 
closely followed by the results of the MLP and the 
Elman models. The Jordan net takes up the fourth 
position, when evaluated with the used error meas-
ures. Concerning the factor of determination r², the 
testing period demonstrates the best result compared 
with the performances of the different models during 
the training and cross validation periods. However, 
the RMSE and the MAE are smaller for the latter pe-
riods indicating that, overall, the results for the dif-
ferent periods are similar in terms of quality.

A comparison of the measured and modeled wa-
ter levels for the test years 1968, 1978, 1988 and 1998 
is presented graphically in figure 4. The MLP (Fig. 
4a) performs very well during medium water levels 
in spring and autumn, well during low water levels 
in winter, and quite well in summer if the water level 
is not too high. It performs poor in modeling high 
water levels like in the summer of 1968 or in the sum-
mer of 1998. However, the Jordan net (Fig. 4b) per-
formed a good simulation of the high water levels in 
all years. Nevertheless, especially the low water levels 
of January, February, and March 1978 were simulated 
incorrectly; they were clearly lower than simulated. 
The Elman net (Fig. 4c) performs similar to the MLP, 
demonstrating the same shortcomings in simulat-
ing the high water levels. The best performance was 

achieved by using the MLR model (Fig. 4d). This 
model simulates low, medium and high water levels 
close to reality.

Sensitivity analyses, which were carried out for all 
the neural network models, point towards the impor-
tance of PER as input variable for simulating water lev-
els at Cuntan station. The implemented WESD seems 
to be less relevant. A consecutive test of the model 
performance excluding PER (Tab. 4) and WESD data 
(Tab. 5) confirmed this outcome. Leaving out the 
PER data led to a deterioration of performance by a 
decrease of r² on an average of 0.025, and an increase 
of the RMSE and MAE of about 0.15 m. Leaving out 
the WESD data caused a decrease of r² by an average 
of only 0.008, and an increase of the RMSE and MAE 
of 0.05 m and 0.03 m, respectively. Analogous to the 
neural network models, leaving out PER data led to a 
worse result than leaving out the WESD data for the 
MLR model. When the WESD data was left out, the 
outcome was hardly affected. 

5 Discussion and conclusions

In the last ten years, neural networks have be-
come a widely accepted tool in the field of hydro-
logical modeling. The majority of studies deal with 
the application of neural networks for rainfall-runoff 
modeling (e.g. antar et al. 2006; cigizogLu et al. 

Table 3: Performance comparison of the different models for 
the a) testing, b) training, and c) cross validation period

TESTING r2 RMSE (m) MAE (m)
MLP 0.8548 2.16 1.35

Jordan net 0.8391 2.27 1.55
Elman net 0.8548 2.17 1.39

MLR 0.8611 2.09 1.26

a)

TRAINING r2 RMSE (m) MAE (m)
MLP 0.8207 2.07 1.31

Jordan net 0.7892 2.25 1.49
Elman net 0.8162 2.10 1.35

MLR 0.8250 2.05 1.25

b)

CROSS 
VALIDATION

r2 RMSE (m) MAE (m)

MLP 0.8478 1.91 1.30
Jordan net 0.8162 2.12 1.57
Elman net 0.8433 1.94 1.38

MLR 0.8485 1.90 1.28

c)
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Fig. 4: Measured (in gray) and predicted (in black) water levels for the test years 1968, 1978, 1988 and 1999: a) for the Multi-
layer Perceptron (MLP), b) for the Jordan net, c) for the Elman net, d) for the multiple linear regression (MLR) model
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2007; DaWSon et al. 2002; DiBike and SoLomatine 
2001; SentHiL kumar et al. 2005). Neural networks 
have also been used for forecasting water levels 
(aLViSi et al. 2006; BuStami et al. 2006; cHau and 
cHeng 2002; PHien and kHa 2003). However, the 
number of studies dealing with this topic is rather 
limited. 

In the majority of cases, neural networks show a 
very good performance, often outperforming other 
models (antar et al. 2006; cigizogLu 2003; DaWSon 
et al. 2002; DiBike and SoLomatine 2001). antar et 
al. (2006) showed that the application of a MLP for 
simulating rainfall-runoff processes at the Blue Nile 
was more successful than the application of a distrib-
uted physically based model. DiBike and SoLomatine 
(2001) compared the performances of two neural 
network models (MLP and radial basis function net) 
with a conceptual rainfall-runoff model; the neural 
network models were slightly better in forecast-
ing the runoff of the Apure River (Venezuela). In 
cigizogLu (2003), a MLP outperforms a multiple 
nonlinear regression model by forecasting runoff of 
three rivers in Turkey. 

However, there are also studies in which regres-
sion models show similar or even slightly better re-
sults than neural network models. HSieH et al. (2003) 
carried out seasonal predictions of the Columbia 
River streamflow at Donalds (Canada). The results 

achieved by applying feed-forward neural networks 
were essentially identical to the results of a MLR 
model. PHien and kHa (2003) forecast water levels 
for three stations along the Red River (Vietnam). 
The outcome of this study is that the MLR models 
perform slightly better than the applied multilayer 
feed-forward neural network with backpropagation 
algorithm.

In DaWSon et al. (2002), artificial neural networks 
were applied for runoff forecasting at the Yangtze 
River, about 600 km downstream of Cuntan station. 
They identified the two applied neural networks 
(MLP and radial basis function net) as the most suc-
cessful models. However, the application of a step-
wise MLR model showed a result that is only slightly 
worse than that of the neural network models. 

Like in the above cited study of PHien and kHa 
(2003), in the present study, the MLR model perform-
ance is slightly better than the performances of the 
neural network models. Even though the perform-
ance measures of the different models are similar 
(Tab. 3), the diagrams comparing the modeled and 
measured water levels for the test years (Fig. 4) illus-
trate this result. Whereas the MLR model simulates 
low, medium and high water levels close to reality, 
the MLP and the Elman net illustrate shortcom-
ings mainly in forecasting high water levels, and the 
Jordan net in forecasting low water levels. 

The authors conclude that there is a strong lin-
ear relationship between the input variables and wa-
ter level at Cuntan station. This is also indicated by 
the highly significant correlation between input and 
output variables, which can be taken from table 2. 
According to this strong linear relation, the MLR 
model shows the best result in forecasting water lev-
els at Cuntan station.

It is quite problematic to put this result into a 
wider context, as the number of studies comparing 
the results of neural network models with the out-
comes of regression analyses is rather limited. As can 
be seen above, the results obtained by such a com-
parison furthermore differ regionally. Concerning 
regional setting and methods, the study correspond-
ing most with the present one is the above mentioned 
by DaWSon et al. (2002). The deviation from our re-
sult might be attributed to the period of analysis. In 
DaWSon et al. (2002) only data from June to mid-
August for the period from 1991 to 1993 were used. 
In the Yangtze River basin, the highest rainfall is 
generally recorded during these months, and there-
fore these months are often accompanied by flood 
events, six during their study period. It is obvious 
that the relevance of influential factors during the 

Table 4: Performance comparison of the different models with-
out the implementation of potential evaporation rate (PER) for 
the a) testing, b) training, and c) cross validation period

TESTING r2 RMSE (m) MAE (m)
MLP 0.8386 2.28 1.48

Jordan net 0.8042 2.48 1.75
Elman net 0.8224 2.37 1.64

MLR 0.8509 2.15 1.35

a)

TRAINING r2 RMSE (m) MAE (m)
MLP 0.8142 2.11 1.37

Jordan net 0.7693 2.35 1.61
Elman net 0.7819 2.28 1.55

MLR 0.8137 2.11 1.33

b)

CROSS 
VALIDATION

r2 RMSE (m) MAE (m)

MLP 0.8373 1.97 1.37
Jordan net 0.7778 2.33 1.76
Elman net 0.8132 2.13 1.55

MLR 0.8428 1.94 1.34

c)
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summer precipitation maxima is significantly differ-
ent from observations that include the entire year. 
Consequently, methods suitable for one approach 
might be less suitable for another approach.

All in all, the application of a MLR model enables 
an accurate prediction of the water level at Cuntan 
station 8 days in advance. In addition to this main 
result, some further conclusions can be drawn: the 
Jordan net, rarely used in the field of hydrology un-
til now, shows a good capability in forecasting high 
water levels. As the prediction of high water levels 
is of special interest for flood risk management, this 
should be investigated in future studies.

It can also be concluded that the additional im-
plementation of evaporation and snow data, usually 
left out in the field of neural network modeling, gen-
erally improved the model performance. Whereas 
the integrated WESD data improved the perform-
ance of all the models only marginally, the imple-
mentation of the PER data definitely improved the 
modeling results. 
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