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Summary: Mountain ecosystems are commonly regarded as being highly sensitive to global change. Due to the system 
complexity and multifaceted interacting drivers, however, understanding current responses and predicting future changes in 
these ecosystems is extremely difficult. We aim to discuss potential effects of  global change on mountain ecosystems and 
give examples of  the underlying response mechanisms as they are understood at present. Based on the development of  
scientific global change research in mountains and its recent structures, we identify future research needs, highlighting the 
major lack and the importance of  integrated studies that implement multi-factor, multi-method, multi-scale, and interdisci-
plinary research. 

Zusammenfassung: Gebirgsökosysteme gelten generell als sehr empfindlich gegenüber dem Globalen Wandel. Allerdings 
sind aufgrund der Komplexität der Systeme und wegen vielfältiger Interaktionen der Einflussfaktoren sowohl das Verständ-
nis gegenwärtiger Reaktionen als auch Vorhersagen zukünftiger Änderungen sehr schwierig. Unser Ziel ist es, potenzielle 
Effekte des Globalen Wandels auf  Gebirgsökosysteme zu diskutieren und Beispiele für die zugrunde liegenden Reaktions-
mechanismen zu geben, soweit sie derzeit verstanden sind. Basierend auf  der Entwicklung und den heutigen Strukturen der 
„Global Change“-Forschung in Gebirgen zeigen wir den Forschungsbedarf  auf  und betonen insbesondere das weitgehende 
Fehlen und die Bedeutung integrativer Studien über verschiedene Faktoren, Methoden, Maßstäbe und Disziplinen hinweg.

Keywords: High mountain ecology, arctic-alpine environments, climate change, land use and land cover change, tree line 
alteration, range shifts, altitudinal zonation

1 Introduction

The current debate on regional and local re-
sponses that might occur under future global 
change is often focussed on sensitive landscapes, 
such as the Arctic, coastal regions, and mountains, 
especially the Alpine (ACIA 2004; IPCC 2007a, b). 
In this context “global (environmental) change” re-
fers to changes having both natural and anthropo-
genic causes and encompass, among other factors, 
climate change, land use cover change, industriali-
sation, urbanisation, and changes in atmospheric 
chemistry (gOuDie and cuff 2002). BecKer and 
BugmAnn (2001) classify global environmental 
change affecting mountain ecosystems into two 
categories: systemic changes that operate at a global 
scale (such as trace gas-induced climate change) and 
cumulative changes caused by processes at a local 
scale but that are globally pervasive (such as land 
use cover change). In this article, we will concen-
trate on the effects of climate change, as well as on 
increasing levels of CO2, nitrogen input, and land 
use change. We use the term “ecosystem” accord-

ing to the definition of tAnsLey (1935), including 
the organism complex and the complex of physical 
factors (with climate and soil as important determi-
nants) involved and considering that these systems 
are characterised by constant interchange between 
organisms and between organisms and inorganic 
factors. 

Mountain ecosystems are expected to react very 
sensitively to climate change (IPCC 2007a), with 
both natural and social systems being influenced 
(BenistOn 2000, 2006). In the case of thresholds 
being exceeded, these changes can be irreversible 
(BenistOn 2003). While long-term predictions are 
not possible, scenarios can be used to describe po-
tential future conditions. These scenarios cover 
a broad range of possible developments, which 
makes obtaining distinct conclusions difficult. 
Furthermore, potential non-linear feedbacks and 
species interactions can influence and possibly 
override autecological responses to climate change 
(riAL et al. 2004; BurKett et al. 2005; NOgués-
BrAvO et al. 2007; WOOKey et al. 2009). For exam-
ple, suttLe et al. (2007) describe how an increase 
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of precipitation that extends the rainy season in an 
area with a Mediterranean climate and long sum-
mer droughts initially causes an increase in plant 
biomass in an ecosystem and, thus, also increases 
the habitat quality for herbivores, predators and 
parasitoids, but after a few years, an altered plant 
species composition leads to changes in the tim-
ing of food availability and a decline in the habitat 
quality for higher trophic levels.

In addition to climate change, changes in land 
use and land cover are widely regarded as one of the 
main drivers of global change affecting mountain 
ecosystems (e.g., BugmAnn et al. 2007; ZierL and 
BugmAnn 2007; BAtLLOri and gutierreZ 2008). 
Economic growth and demography will have a ma-
jor impact on agriculture and grazing regimes in 
mountain areas. In some regions, this may lead to 
environmental deterioration due to, e.g., deforesta-
tion, over-grazing and the cultivation of marginal 
soils (BenistOn 2000, 2003), while other regions 
may experience extensification and reforestation 
(Occc and PrOcLim 2007). For example, the 
European Alps have experienced dramatic changes 
in land use and land cover over the last decades be-
cause of increasing machine deployment, the aban-
donment of less accessible land and the intensifica-
tion of more productive areas (tAsser et al. 2005; 
Börst 2006; giuPPOni et al. 2006). The associated 
impacts on vegetation, including alpine tree lines, 
are expected to be huge. Moreover, nitrogen avail-
ability and mobility have been altered substantially 
on a global scale by industrial N fixation, the com-
bustion of fossil fuels, the cultivation of nitrogen-
fixing crops, and land conversion (vitOuseK et al. 
1997); atmospheric nitrogen inputs are predicted 
to further increase considerably (gALLOWAy et al. 
2004; LAmArque et al. 2005). This will have major 
impacts on frequently nutrient-limited mountain 
ecosystems (WOOKey et al. 2009). Furthermore, 
the nitrogen concentration in rivers and lakes may 
increase, with major effects on aquatic ecosystems 
(rOgOrA et al. 2003).

Therefore, to contribute to solving future prob-
lems in a changing world, research on mountain 
responses to global change is a top priority. Thus, 
after giving an overview of the development of 
global change research in mountains, this review 
article aims to discuss potential effects of globally 
triggered changes in mountain ecosystems and our 
current scientific understanding of the underlying 
response mechanisms. Moreover, based on this 
analysis, we aim to derive future mountain research 
perspectives.

2	 Development	of 	scientific	global	change	re-
search	in	mountains

We conducted a bibliometric analysis of scientif-
ic publications (peer-reviewed articles, proceedings, 
and reviews) listed in the ISI Web of Science (Science 
Citation Index Expanded, 1899 to January 11, 2010) 
database, which showed that global change research 
is growing at an exponential rate, and this is reflected 
in the number of publications on the thematic com-
plex of mountains, climate change, and land use and 
cover change (Fig. 1). However, we are aware that 
this analysis provides trends rather than exact fig-
ures because not all publications dealing with global 
change in mountains necessarily use these key words. 
Although publications covering these topics extend 
back well into the early part of the 20th century, this 
integrated approach to studying global change in 
mountainous terrain is relatively recent (Tab. 1). Of 
the 74,316 publications we found on mountain re-
search, only 224 records contained each of the three 
research topics, the earliest of which was published 
in 1991. 

Interestingly, between 1990 and 1991, there was 
a dramatic shift in the number of publications in all 
three thematic areas (Fig. 1), which can be linked to 
several important developments that occurred in the 
latter half of the 20th century (Fig. 2). Mountain and 

Fig.	 1:	 Plot	 of 	 the	 percentage	 of 	 the	 total	 number	 of 	 pa-
pers	published	per	year	 from	a	search	of 	 the	key	phrases:	
i) “mountain* OR alpine (74,316 total since 1900; 95% of  
total	published	after	 1978),	 ii)	 landuse	OR	"land	use"	OR	
"land	cover	change"	OR	"landcover	change"	(24,643	since	
1993;	99%	of 	total	published	after	1978),	iii)	climate	change	
OR	"climatic	change"	OR	"global	warming"	(39,678	since	
1910;	99%	of 	total	published	after	1978),	and	iv)	all	previous	
three	combined	(224	since	1991)	in	the	ISI	Web	of 	Science	
(Science	Citation	Index	Expanded,	1899	to	January	11,	2010)	
database
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alpine research began to flourish during the 1960s 
and continued through 1980s with the development 
of several international programmes that fostered 
collaborative transdisciplinary research in moun-
tains (LAuer 1984; Ives 1992; Price 1995; MesserLi 
and MesserLi 2007, 2008), such as the International 
Biological Programme (1964–1974), the International 
Geographical Union (IGU) Commission on High-
Altitude Geography (founded by Carl Troll in 
1968), and the UNESCO Man and the Biosphere 
Programme (MAB) Project 6 (1973–1987). Further 
milestones were the development of the International 
Centre for Integrated Mountain Development 
(1984), the creation of the International Geosphere-
Biosphere Programme (1986), under whose auspices 
(among others) the Mountain Research Institute was 
founded (BecKer and BugmAnn 1997, 2001), and 
the inclusion of chapter 13 on “Managing Fragile 
Ecosystems: Sustainable Mountain Development” 
in the UNCED Agenda 21 in Rio de Janeiro (1992). 
Moreover, the UN proclaimed the year 2002 to be the 
“International Year of Mountains”. Another step was 
the constitution of the IGU Commission “Mountain 
Response to Global Change” in 2008. Furthermore, 
the development of the field recently reached a new 
milestone with the conference “Global Change and 
the World’s Mountains”, held in Perth in September 
2010. All of this underlines the importance of global 
change as an “emerging field” in mountain research.

Similarly, technological advances (e.g., the start 
of the Landsat program in the early and mid-1970s) 
have provided datasets that allow for the detection 
and monitoring of change, which correlates well with 
the increase in the rate of publications during the mid-

to-late 1970s addressing land use and cover change 
topics (Fig. 2). Regarding advances in climate change 
research, the publication of “the Charney report” in 
1979 (chArney et al. 1979) marked the beginning 
of a concerted effort to scientifically understand the 
impacts of climate change caused by anthropogenic 
carbon dioxide emissions and culminated in the first 
of four reports by the Intergovernmental Panel on 
Climate Change (IPCC) in 1991. 

3 Potential effects on mountain ecosystems 

The intensified research described above has in-
dicated numerous potential effects of global change 
on mountain ecosystems. Climate change will 
have a strong impact on the cryosphere, while im-
pacts on glaciers, permafrost, the altitudinal snow 
line and cryospheric processes will in turn cause 
changes in hydrology, vegetation and geomorphol-
ogy (Price and BArry 1997; BenistOn 2003; IPCC 
2007a). Permafrost degradation and glacier retreat 
lead to the destabilisation of mountain areas that can 
result in mass movements, such as rockfalls, land-
slides, and debris flows (KääB 2008; hArris et al. 
2009). Hydrological processes (e.g., precipitation, 
evapotranspiration, soil moisture, runoff, discharge, 
sediment loads, and pollution loads of runoff wa-
ter) will not only be affected by climate change, but 
also by vegetation transformations caused by land 
use and land cover change (Price and BArry 1997; 
BenistOn 2000; LóPeZ-mOrenO et al. 2008; stehr 
et al. 2010). Overall, water discharge from moun-
tains will be altered with respect to timing, volume 

Terms Number	of	ISI	
publications

Year	of	first	
record

mountain* OR alpine 74,316a 1900

landuse OR “land use” OR “land cover change” OR “landcover change” 24,643b 1933

“climate change” OR “climatic change” OR “global warming” 39,678b 1910

(mountain* OR alpine) AND (landuse OR “land use” OR “land cover change” 
OR “landcover change”) 1,563 1978

(mountain* OR alpine) AND (“climate change” OR “climatic change” OR 
“global warming”) 3,175 1989

(mountain* OR alpine) AND (landuse OR “land use” OR “land cover change” 
OR “landcover change”) AND (“climate change” OR “climatic change” OR 
“global warming”)

224 1991

Tab.	1:	Total	number	of	records	and	year	of	first	record	for	publications	listed	in	the	ISI	Web	of	Science	(Science	Citation	
Index	Expanded,	1899	to	January	11,	2010)	using	various	keywords	or	phrases

a 1978–2010: 95% of all records
b 1978–2010: 99% of all records



192 Vol. 65· No. 2

and variability (messerLi et al. 2004; vivirOLi and 
WeingArtner 2004; vivirOLi et al. 2007; LóPeZ-
mOrenO et al. 2008).

Another major issue is the impact on biodiver-
sity (Price 2008). Mountain ecosystems are highly 
vulnerable to climate change, regarding both average 
climatic values and extreme events (DiAZ et al. 2003). 
As a consequence, range shifts, modifications of as-
semblage compositions, and species extinctions are 
expected (NOgués-BrAvO et al. 2007; seKerciOgLu 
et al. 2008; vOn Dem Bussche et al. 2008; richter 
et al. 2009; schöB et al. 2009; BenDix et al. 2010; 
KreyLing et al. 2010; KuLLmAn 2010). For instance, 
vegetation is influenced by climate change (tempera-
ture, snow cover, soil moisture) and by land use cover 
change (e.g., succession, regrowth in some regions, 
afforestation or deforestation and fragmentation in 
others; fire management; the provision of artificial 
snow for winter tourism) (BenistOn 2000; KeLLer 
et al. 2000; WiPf et al. 2005). The effects of these 
processes will concern physiology, primary produc-
tivity, food quality, and decomposition, but will also 
concern diseases, plant-animal-interactions, and spe-

cies composition (Price and BArry 1997; BenistOn 
2000; theuriLLAt and guisAn 2001; ALBert et al. 
2008). For example, an upward shift of alpine plants 
and an increase in the plant species richness of high 
alpine and nival vegetation are already observable 
(WALther et al. 2005a; PAuLi et al. 2007; PArOLO and 
rOssi 2008), with not only upper margins, but also 
optimum elevations and lower distributional margins 
being affected (KeLLy and gOuLDen 2008; LenOir 
et al. 2008, 2009). The effects on mountain forests 
will also be complex due to impacts on productiv-
ity, pests, competition, frosts, windthrows, and fires 
(Price and BArry 1997; BigLer et al. 2005; BugmAnn 
et al. 2005; KurZ et al. 2008b). Moreover, potential 
tree line shifts related to global change will affect 
carbon sequestration (with rising tree lines leading 
to an increase of carbon storage), the cycling of wa-
ter and nutrients, and the maintenance of biodiver-
sity (MILLENNIUM ECOSYSTEM ASSESSMENT 
2005; mALAnsOn et al. 2007).

Similarly, animals can react to altered condi-
tions with physiological, behavioural and genetic 
adaptations or migration, or they may become ex-
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tinct (Price and BArry 1997; ZureLL et al. 2009). A 
growing number of studies report an upward shift 
of species ranges (and occasionally an associated 
range contraction for high-altitude species) of, e.g., 
birds, amphibians, insects, reptiles, and mammals 
(seimOn et al. 2007; WiLsOn et al. 2007; mOritZ et al. 
2008; rAxWOrthy et al. 2008; vOn Dem Bussche et 
al. 2008; chen et al. 2009). Further faunal changes 
are projected to be especially pronounced in moun-
tain regions, not only due to the strong environmen-
tal variation over short distances, but also because 
of the occurrence of many species’ range edges and 
the large number of small-range endemic species 
(LAWLer et al. 2009). 

4	 Underlying	response	mechanisms

The above-mentioned vast number of potential 
global change effects in mountains highlights the 
relevance of understanding the underlying mecha-
nisms. However, in many cases, these are still not 
well understood. Investigations often focus on eye-
catching topics, such as shifts in glaciation or the 
altitudinal tree line, although permafrost thawing 
and related hazards have also increasingly been at-
tracting interest. Instead of collaborative studies 
across disciplines, which are demanded for ecosys-
tem research in general (e.g., LTER – Long Term 
Ecological Research, cf. http://www.ilternet.edu/) 
and environmental observations in mountains in 
particular (e.g., GLOCHAMORE Research Strategy, 
cf. grABherr et al. 2005), we usually find sectoral re-
search. In the following sections, we thus present an 
overview of response mechanisms to global change 
(comprised of alterations of climate, CO2 levels, nu-
trient availability, and land use) structured according 
to cardinal fields of research. Supplement I illustrates 
the given examples and interdependencies.

4.1 Snow, ice, and permafrost

The response of the cryosphere to global change 
is of the utmost importance for mountain ecosys-
tems because of its effect on micro-climate, hydrol-
ogy, vegetation, and carbon balance. 

Snow cover, for example, via its spatial and 
temporal distribution, determines the timing of wa-
ter runoff (rössLer and LöffLer 2010) and distur-
bances associated with avalanches (sLAymAKer and 
KeLLy 2007). It has also been proven to be impor-
tant for the ecologically relevant near-surface tem-

peratures, as well as their decoupling from boundary 
layer conditions (LöffLer and PAPe 2004; WunDrAm 
et al. 2010). Thus, the impact of climate change on 
mountain ecosystems is likely to be modified by 
snow cover and its alterations.

A highly prominent feature of the impact of 
global change in mountain regions is the retreat of 
glaciers (sLAymAKer and KeLLy 2007). The resulting 
processes and landforms are not only of interest for 
paraglacial geomorphology (BALLAntyne 2002), but 
they also have important direct (e.g., primary succes-
sion on recently deglaciated terrain, cf. mAttheWs 
1992; cAnnOne et al. 2008; töWe et al. 2010) and 
indirect (e.g., timing and volume of water discharge) 
effects on mountain ecosystems.

Melting glaciers are a global phenomenon (IPCC 
2007a) and are regarded as key indicators of climate 
change, although the determining climatic variables 
differ in space and time (BArry 2006). Their mass 
balance is generally influenced by atmospheric con-
ditions, such as solar radiation, air temperature, pre-
cipitation, wind, cloudiness, and individual glacier 
characteristics. As a rule, changes in glaciers at low 
latitudes primarily depend on variations of atmos-
pheric moisture content, which in turn influence so-
lar radiation, precipitation, albedo, atmospheric long 
wave emission, and sublimation. On the other hand, 
temperate glaciers in mid-latitudes are mainly affect-
ed by winter precipitation, summer temperature, and 
summer snow falls influencing their albedo (ZemP et 
al. 2008). For example, the importance of glacier sur-
face albedo was shown by OerLemAns et al. (2009): 
especially in years with low snow precipitation, the 
accumulation of dust (originating from exposed mo-
raines) on retreating glaciers leads to a decrease of 
the glacier surface albedo, further enhances glacier 
melt and, thus, intensifies glacier retreat in a posi-
tive feedback cycle. However, the exact mechanisms 
underlying glacier responses to climate change (espe-
cially to short-term extreme situations) are generally 
complex, and sudden regime shifts in glacier mass-
balance drivers have to be considered as possible 
(e.g., WinKLer and nesJe 2009; WinKLer et al. 2010).

Permafrost changes due to global change not 
only have effects on slope stability; they also cause 
changes in carbon balance, the release of trace gas-
es, and hydrology (sLAymAKer and KeLLy 2007). 
Therefore, permafrost response mechanisms are also 
important from the ecosystem point of view.

Mountain permafrost is very sensitive to climate 
change, especially in areas where ground tempera-
tures are only a few degrees below zero (hArris et 
al. 2009; christiAnsen et al. 2010). However, in spite 
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of clear evidence that warming permafrost causes 
destabilisation, it remains difficult to attribute in-
dividual events to this phenomenon (gruBer and 
hAeBerLi 2007). Thawing is known to be more pro-
nounced in convex areas, but the highly complex 
topography of mountain regions, the influence of 
snow cover, geological discontinuities, and massive 
ice bodies in rockwalls cause complicated three-
dimensional effects on the subsurface thermal field 
(nötZLi et al. 2007). Moreover, in addition to being 
influenced by heat conduction, mountain permafrost 
is also affected by heat transfer via percolating water 
in fractures and deep-reaching cleft systems, further 
hindering predictions of response to climate change 
(KrAutBLAtter and hAucK 2007).

4.2	Water	

Hydrological processes in mountains are tightly 
linked to the cryosphere. For example, in areas where 
snow melt hydrology dominates the water cycle (es-
pecially where winter temperatures are close to 0 °C), 
the seasonal timing of runoff is sensitive to projected 
changes in the snow pack associated with warming 
trends. In contrast, volume changes in projected an-
nual runoff are chiefly associated with alterations in 
precipitation and evapotranspiration (ADAm et al. 
2009). Snow sublimation is an important process in 
mountain regions with high solar radiation and low 
relative humidity, such as the High Atlas Mountains 
in Morocco (schuLZ and De JOng 2004; KLOse et al. 
2010a). Climate change may result in a decrease in 
sublimation due to higher temperature and, there-
fore, faster snowmelt (KLOse et al. 2010b). In con-
trast, Wimmer et al. (2009) expect an increase in the 
sublimation rate in Mongolia, but due to high vari-
ability between different Global Circulation Models, 
no non-ambiguous projection was possible.

A prominent example of a large-scale impact 
of climate change on hydrology is the projected de-
crease in the mean upstream water supply from the 
upper Indus, Ganges, Brahmaputra, and Yangtze 
rivers, as well as an increase of the water supply from 
the upper Yellow River (immerZeeL et al. 2010). This 
is attributed to the contrasting influences of decreas-
ing meltwater production and increasing rainfall, 
which are of different importance in the various 
catchments of the Himalaya region (BOOKhAgen 
and BurBAnK 2010; immerZeeL et al. 2010). 

Vegetation changes due to global change will 
also affect hydrological systems. For example, refor-
estation of abandoned farmland has been shown to 

cause higher evapotranspiration and, thus, decreases 
in water discharge and stream flow (LóPeZ-mOrenO 
et al. 2008). This may also slightly reduce flood risk 
(rAnZi et al. 2002).

4.3 Vegetation

4.3.1 Alpine vegetation

Studies on the impact of climate change on al-
pine vegetation have frequently implemented warm-
ing experiments using, for example, open top cham-
bers, heating cables, and infra-red lamps (for an 
overview of methods, see shen and hArte 2000; 
shAver et al. 2000). The reactions shown by vegeta-
tion in these experiments include changes in plant 
growth and reproduction (e.g., KuDernAtsch et al. 
2008), phenology (e.g., Dunne et al. 2003, 2004), 
vegetation structure, and assemblage composition 
(e.g., KLAnDeruD and tOtLAnD 2005; erschBAmer 
2006, 2007). Because these manipulation experi-
ments usually last a relatively short time, they allow 
only short-term conclusions to be made. Longer-
term monitoring programmes have revealed an in-
crease of vegetation homogeneity (JurAsinsKi and 
KreyLing 2007; BrittOn et al. 2009) and an upward 
migration of species (KLAnDeruD and BirKs 2003; 
PAuLi et al. 2007; hOLZinger et al. 2008; PArOLO 
and rOssi 2008; erschBAmer et al. 2009). However, 
due to low species’ dispersal capabilities, dispersal 
limitations due to fragmentation and a lack of mi-
gration routes, the observed upward movement of 
alpine plant species generally lags behind changes in 
climatic conditions (theuriLLAt and guisAn 2001; 
WALther et al. 2005b). Dendroecology, which is an-
other useful long-term method for detecting climate 
change responses in mountains (e.g., BecKer et al. 
2007), has recently also been applied in treeless al-
pine ecosystems. For example, the radial growth of 
the dwarf shrub Empetrum nigrum ssp. hermaphroditum 
is strongly dependent on summer temperatures (Bär 
et al. 2007, 2008). However, caution is recommend-
ed when relating the growth of nontree woody life 
forms to summer warming, as a number of meth-
odologically induced constraints exist (Büntgen and 
schWeingruBer 2010). Moreover, potential positive 
effects of climate warming on plant growth (via a 
longer vegetation period and higher summer temper-
ature sums) can be overridden by negative effects on 
growth and reproduction, such as an increased dan-
ger of frost damage due to reduced snow pack and 
earlier snow melt (inOuye 2008; WiPf et al. 2009). In 
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general, because of its importance regarding micro-
climate (LöffLer 2007), snow cover and its response 
to climate change is highly relevant with respect to 
the future development of alpine vegetation.

The effects of elevated CO2 on alpine plant 
growth appear to be transitory. However, via de-
creased stomatal conductance, higher CO2 levels can 
generally influence transpiration and soil moisture 
and reduce drought stress in plants (Körner 2006). 
Additionally, individual responses of plant species 
can differ, potentially causing changes in vegetation 
structure and composition (theuriLLAt and guisAn 
2001) and in forage quality for associated herbivores 
(hAnDA et al. 2005). Overall, nutrient availability ap-
pears to be the key factor that limits carbon-driven 
enhancement of alpine plant growth (Diemer 1994; 
Diemer and Körner 1998). 

Nutrient regimes can be altered by both warm-
ing and atmospheric inputs. Particularly elevated 
levels of nitrogen are expected to modify vegeta-
tion structure and composition through differential 
responses of species and to accelerate ecosystem re-
sponses to climate change (theuriLLAt and guisAn 
2001). For instance, lichen richness has been shown 
to decline in areas with high N deposition (BrittOn 
et al. 2009). Ultimately, higher nutrient levels are ex-
pected to increase the importance of plant species 
interactions in alpine ecosystems, which have previ-
ously been characterised by comparatively low com-
petition (KLAnDeruD and tOtLAnD 2005). 

4.3.2 Tree line

The global cause of tree line formation is heat de-
ficiency, which is regionally modulated by moisture 
conditions, wind, avalanches, grazing, fire, and hu-
man influences (Körner and PAuLsen 2004; WALther 
et al. 2005b; Körner 2007; Wu et al. 2007; miehe et al. 
2008; hOLtmeier 2009; hOLtmeier and BrOLL 2010). 
Thus, the influence of climate change depends on ex-
act site conditions. For example, warming in combi-
nation with increased precipitation is expected to be 
advantageous for tree growth in sites that are now too 
dry for tree growth, while warmer and dryer condi-
tions could foster tree growth in currently wet areas 
(hOLtmeier and BrOLL 2007; mALAnsOn et al. 2007). 

Mean temperatures have frequently been used as 
indicators of tree line position. For example, the tree 
line has been correlated with growing season mean 
ground temperatures between 5.4 and 7.8 °C (Körner 
and PAuLsen 2004; Körner 2007). However, the im-
portance of winter temperatures has also been report-

ed (KuLLmAn 2007; hArsch et al. 2009), and extreme 
temperatures (as opposed to means) have been sug-
gested to have a major impact on the tree line, e.g., 
related to the freezing resistance of seedlings (PiPer 
et al. 2006). 

The exact role of temperature versus that of CO2 
fertilisation in tree line dynamics is controversial. The 
growth of many tree line species seems to be limited 
by tissue formation and, thus, by temperature rather 
than by photo-assimilate provision (“sink limitation 
hypothesis”; cf. grAce et al. 2002; Körner 2003a, 
b, 2007; shi et al. 2008). However, some species ap-
pear to be carbon-limited, at least in the short term 
or during winter (“carbon balance hypothesis”), and 
potential long-range effects of increased CO2 con-
centrations on competition and forage quality might 
influence community composition and food webs 
(hAnDA et al. 2005; Li et al. 2008a, b). The discus-
sion regarding sink limitation and carbon balance hy-
potheses thus continues, demanding further research 
(BAnsAL and germinO 2008; cf. review in smith et 
al. 2009). Another pathway related to how increasing 
temperatures might influence the tree line is through 
the acceleration of nutrient cycling, which in addition 
to enhanced atmospheric nitrogen deposition, could 
stimulate tree growth at the tree line (cf. grAce et al. 
2002).

Because of time lags, threshold effects, and feed-
back mechanisms, the tree line is not necessarily in 
equilibrium with climatic conditions, and thus, it will 
not automatically immediately respond to climate 
change. Established trees can survive climate dete-
riorations for long periods, while tree line advance 
in response to warming depends, among other fac-
tors, on successful tree regeneration, species disper-
sal, and the availability of soils and generally suitable 
and invasible sites at higher altitudes (DuLLinger et 
al. 2004; LöffLer et al. 2004; WALther et al. 2005b; 
KuLLmAn 2007; hOLtmeier 2009). Additionally, tree 
line response to climate change can be hampered by 
pathogens (tOmBAcK and resLer 2007) or herbivores 
(cAirns et al. 2007). Regarding tropical American tree 
lines, several feedbacks that prevent tree line advance 
to higher altitudes have been described; for example, 
conditions for tree seedlings in the open Páramo are 
adverse because of extreme radiation, severe night 
frosts (in comparison to a less extreme microclimate 
within the forest), and the occurrence of fires (BADer 
et al. 2007a, b). All in all, theuriLLAt and guisAn 
(2001) suggested that warming of merely 1–2 °C will 
not cause any major tree line shifts and that a tem-
perature increase of 3–4 °C will be required to trigger 
distinct altitudinal changes. 
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The influence of land use on the tree line due 
to, e.g., grazing, agriculture, fire management, or for-
estry, can interact with the impact of climate change 
(BAKer and mOseLey 2007) or even override it com-
pletely. For instance, the spatial expansion of forest 
fragments within the alpine tree line ecotone can 
be a result of declining pastoral use and should not 
be confused with the effects of a warming climate 
(LöffLer et al. 2004; LAsAntA-mArtineZ et al. 2005; 
gehrig-fAseL et al. 2007; rössLer and LöffLer 2007; 
rössLer et al. 2008; vittOZ et al. 2008; LeOneLLi 
et al. 2009; hOfgAArD et al. 2010). However, po-
tential vegetation response to climate change can 
be counteracted by maintaining traditional land 
use (theuriLLAt and guisAn 2001; AnschLAg et al. 
2008; BAniyA et al. 2009). In conclusion, in contrast 
to the assumptions made in many studies, tree lines 
cannot necessarily be regarded as good indicators of 
climate change. Beyond this, more research is nec-
essary to fully understand the mechanisms acting 
at the current tree line. Self-enforcing effects, e.g., 
resulting from enhanced snow deposition within 
newly established tree populations due to reduced 
wind velocities (hOLtmeier and BrOLL 2010) or from 
higher temperatures within a dense growing tree 
line, should be addressed in future studies.

4.4 Soils

The warming of soils triggers increased microbial 
activity, net N mineralisation, and nitrification (e.g., 
rustAD et al. 2001; mAKArOv et al. 2003; LöffLer 
et al. 2008). Additionally, hAgeDOrn et al. (2010) 
showed that experimental soil warming throughout 
a single growing season increased the CO2 efflux 
from treeline soils by intensifying the decomposi-
tion of soil organic matter to a greater extent than 
carbon gains through plant growth. However, win-
ter snow cover is of great importance for soil proc-
esses (eDWArDs et al. 2007), and under certain con-
ditions, climate warming could reduce snow packs, 
which in turn can lead to colder soils and an increase 
in the frequency of freeze-thaw cycles (frePPAZ et 
al. 2008). Consequential reductions of soil respira-
tion may cause an increase of carbon sequestration 
(mOnsOn et al. 2006). In contrast, nitrogen leach-
ing from soils has been reported to increase with 
decreases in the snow pack, which is potentially at-
tributable to reduced root uptake and/or to physical 
(rather than microbial) degradation of soil organic 
matter (frePPAZ et al. 2008). Contrary to assump-
tions of soil cooling due to climate change, a study 

by henry (2008) (covering sites across Canada up to 
an elevation of 1,100 m a.s.l.) indicated that warmer 
winters have historically caused a reduction of soil 
freezing days, in spite of declining snow packs. This 
may lead to a stimulation of soil respiration and the 
decomposition of organic matter. 

Generally, due to the different experimental 
conditions used, the results from various studies 
on soil warming are often contradictory. Moreover, 
decomposition depends not only on temperature, 
but also on soil moisture (sJögersten and WOOKey 
2004; Aerts 2006); other important factors are 
climate change effects on soil fauna communi-
ties and migration abilities (Aerts 2006; hågvAr 
and KLAnDeruD 2009). In general, indirect effects 
of warming on soil processes via changes of litter 
quality due to plant species composition and range 
shifts are expected to be substantial and possibly 
even more important than direct physical warming 
(shAW and hArte 2001; Aerts 2006; WOOKey et al. 
2009). Moreover, CO2 fertilisation has been shown 
to stimulate soil respiration and microbial activity in 
tree line soils (hAgeDOrn et al. 2008). Soil fauna has 
also been shown to react to increased nutrient avail-
ability and associated changes in plant litter produc-
tion, at least in the short term, with an increase of 
biomass, a reduction of species richness, and modi-
fied dominance structures, with the fastest responses 
being seen in species with short life cycles (hågvAr 
and KLAnDeruD 2009).

4.5 Fauna

Warming effects on fauna can generally be direct 
or indirect. Increases in temperature over the last cen-
tury have clearly been linked to shifts in species dis-
tributions (LAWLer et al. 2009). While certain species 
are exhibiting poleward shifts in the latitude of their 
ranges, other species have been observed moving 
upward in elevation at rates that are consistent with 
recent temperature increases (PArmesAn and yOhe 
2003). In some regions, lowland birds have begun 
breeding in montane habitats (cricK 2004). In addi-
tion to homoeothermic species, ectothermal species 
of invertebrates are also moving upwards: PArmesAn 
(2003) reported upward shifts of butterfly popula-
tions in North America, which face a higher risk of 
extinction at lower elevations. Range-restricted spe-
cies, such as mountaintop species of animals and 
plants, have been observed to show particularly 
severe range contractions. Presumably, these are 
among the first groups in which entire species have 
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gone extinct due to recent climate change, as they 
are pushed against an altitudinal limit (PArmesAn 
2006). Documented examples of this are small mam-
mals and insects (Beever et al. 2003; WiLsOn et al. 
2005). However, it is still unclear for many taxa how 
closely changes in their distributions match climate 
changes (POPy et al. 2010), and dispersal limitations 
are considered to have an important impact on range 
shifts (hOLZAPfeL and vineBrOOKe 2005; OertLi et 
al. 2008).

For mountainous regions in particular, large 
changes in fauna have been predicted due to the 
strong gradients in environmental conditions that 
exist over relatively short distances and due to the 
fact that the edges of many species’ ranges occur in 
mountainous regions. In mountains and other re-
gions where species encounter their lower latitudi-
nal-range margins, climate warming, together with 
other drivers of biological change, could lead to sig-
nificant losses in biodiversity (WiLsOn et al. 2007). 
General species richness may decline, and communi-
ties may become dominated by widespread species. 
For example, in Europe, butterflies found in cen-
tral and southern European mountains have been 
shown to be more sensitive to climate change than 
most other butterfly species (heiKKinen et al. 2010). 
Additionally, the ranges of endemic species can be 
influenced, especially when they are cold-stenophil-
ous. Turnover rates caused by climate change effects 
in communities of birds, mammals, and amphib-
ians in mountainous regions can be as high as 90%. 
Therefore, especially in these habitats, faunal distri-
butions in the future will change drastically when 
compared to those of today (LAWLer et al. 2009).

Host-plant interactions, as well as other biotic 
interactions, food availability, habitat quality, and 
the abundance of enemies can be altered by a chang-
ing climate. For instance, different climate change 
responses of host plants and herbivores or of prey 
and predators may lead to a mismatch between re-
source availability and suitable climatic conditions 
and may possibly lead to future range contractions 
of animal species (merriLL et al. 2008; schWeiger et 
al. 2008; green 2010). A rather prominent example 
of these biotic interactions is the decline of amphib-
ian species in various mountain areas that has been 
attributed to the pathogenic fungus Batrachochytrium 
dendrobatidis, which benefits from climate change 
(POunDs et al. 2006; BOsch et al. 2007). However, 
this climate-linked epidemic hypothesis is controver-
sial, as it has been suggested that extinctions could 
be explained by the spreading of an invasive patho-
gen, independent of environmental change (LiPs et 

al. 2008). Nevertheless, habitat alterations connected 
to climate change, e.g. the desiccation of wetlands, 
have a major influence on amphibian populations 
(mcmenAmin et al. 2008). Climate change has also 
been shown to influence the winter habitat condi-
tions of high latitude rodents. For instance, altered 
conditions in the subnivean space affect the popu-
lation cycles of lemmings (Lemmus lemmus), making 
rodent peaks less regular (KAusruD et al. 2008). The 
importance of snow conditions and spring tempera-
tures for the onset of the vegetation growth and thus 
for the body mass of reindeer calves is another exam-
ple of such effects (PettOreLLi et al. 2005).

Furthermore, as in lower altitudes, the phenol-
ogy (seasonal timing) of the activity of ectothermal 
animals can be influenced by climate change. For 
insects, the ability to gain sufficient heat energy to 
complete their life cycle has been suggested to limit 
their altitudinal distribution (hODKinsOn 2005). 
Thus, the life cycles of insects and other arthropods 
could be altered drastically. A well know example of 
this, because of its function as a vector for transport-
ing fungi to forest trees, is that of the mountain pine 
beetle (Dendroctonus ponderosae), which has been found 
to have shortened its generation cycle from two years 
to one year in the Rocky Mountains of the United 
States, resulting in increased population abundanc-
es (LOgAn et al. 2003; KurZ et al. 2008a). Another 
example is the altitudinal range expansion of the 
winter-active pine processionary moth (Thaumetopoea 
pityocampa) in the Italian Alps. This is attributed to 
warmer average winter temperatures, accelerating 
early larval development, allowing for increased win-
ter feeding, shorter starvation periods and an overall 
enhancement of survival (BAttisti et al. 2005). 

For the migrating bird species the American rob-
in (Turdus migratorius), the date of their first sighting 
in their mountain habitats was found to be 14 days 
earlier on average in 1999 compared to 1981 (inOuye 
et al. 2000). In parallel, for mountainous bird spe-
cies, it has been observed that the mean laying dates 
of first clutches has advanced (henDricKs 2003; 
POtti 2009). In the Colorado Rocky Mountains, 
hibernating yellow-bellied marmots (Marmota flaviv-
entris) ended their hibernation period up to 38 days 
earlier at the end of the 1990s than in the middle of 
the 1970s, apparently in response to warmer spring 
air temperatures (inOuye et al. 2000). For both hi-
bernating and migrating species, earlier activity in 
mountain habitats could pose problems, as asyn-
chrony with the disappearance of the winter snow 
pack and with vegetation can increase. This could 
occur due to higher precipitation during winter and 
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a resulting constant, or even later date of snow melt, 
although air temperatures might generally rise. After 
these animals initiate activity in the spring, they thus 
face longer periods of snow-covered ground and of 
resources being hidden before the summer growing 
season begins (inOuye et al. 2000). However, vari-
ous alpine species can show very different phenolog-
ical responses to changing climatic conditions. For 
example, migratory bird species may react either to 
low-altitude temperature regardless of high-altitude 
snow pack conditions, or to alpine snow conditions 
regardless of low-altitude warming (green 2010). 

5	 Future	research	needs

The multitude of examples given above high-
lights the fact that there are many uncertainties 
regarding future ecosystem behaviour due to eco-
system complexity (WALther et al. 2005b). Many 
detailed studies have generated highly specific data 
related to response mechanisms to global change 
in mountain areas, but these results were often 
obtained under a narrow range of environmental 
conditions. Additionally, in spite of a large number 
of local-level studies, there are no consistent data 
on whole mountain regions, and there is a serious 
need for further research in this regard (sOnessOn 
and messerLi 2002, 93). Moreover, current stud-
ies raise the question of whether alpine ecosystems 
will actually react as sensitively to climate change as 
predicted (see above), or may be much more resil-
ient towards warming than generally expected. For 
example, the important effect of local topographic 
heterogeneity on factors such as microclimate, snow 
cover, soil conditions, vegetation patterns and ani-
mal diversity has frequently been reported (hOLten 
2003; LöffLer and finch 2005; LöffLer 2005, 
2007; LöffLer et al. 2006; LöffLer and PAPe 2008; 
WunDrAm et al. 2010; Fig. 3), and it has been shown 
that the effects of microtopography on soil and sur-
face temperatures can greatly override the effects 
of slope and region (LöffLer et al. 2006). It is sus-
pected that this topography-dependent temperature 
mosaic might offer refuges to species in the course 
of climate warming (scherrer and Körner 2010, 
2011). Moreover, it is possible that climate change 
will mainly influence exposed and wind-blown ridge 
sites, while areas associated with thick snow cover 
will largely remain unaffected by climate change 
(cf. the “conservative nature of snow”, gJærevOLL 
1956). This debate emphasises the need for a further 
thorough examination of these highly differenti-

ated mountain ecosystems. Standardised approaches 
across different mountain regions, as postulated for 
comparative mountain research by cArL trOLL quite 
some time ago and others since, are vital for these 
types of in-depth studies (e.g., trOLL 1988; sOnessOn 
and messerLi 2002; Winiger and Börst 2003).

Generally, we strongly advocate conducting 
multi-factor studies, which should account for the 
potential physical and biotic effects of not only cli-
mate warming, but also of land use cover change and 
atmospheric nitrogen input (theuriLLAt and guisAn 
2001; LöffLer et al. 2004; rustAD 2008). Such stud-
ies would therefore represent the broad spectrum 
of global change-related factors affecting mountain 
ecosystems as comprehensively as possible. Research 
in this field must also cover various spatial and tem-
poral scales (from micro-scale to macro-scale, cf. 
e.g., PAPe et al. 2009, and long-term studies with high 
temporal resolution) to understand the functioning 
of mountain ecosystems with respect to their spatial 
heterogeneity and configuration and to comprehend 
the spatial interactions between these systems. 

Methodically, different approaches (observa-
tions, experiments, and models) associated with 
particular advantages and disadvantages (cf. rustAD 
2008) have to date often been used exclusively. Ideally, 
the integration of the various methods will allow for 
a better understanding of ecosystem response to 
global change for both ecosystems in general and 
mountain ecosystems in particular (theuriLLAt and 
guisAn 2001; hArte 2005; BugmAnn et al. 2007; 
rustAD 2008; sePPeLt et al. 2009). Concerning ex-
periments on climate warming, with regard to the 
disadvantages of in-situ warming experiments (for 
an overview, see shAver et al. 2000), a thus far rare-
ly investigated possibility is transplanting (prefer-
ably large) monoliths of soil and associated vegeta-
tion between different elevations, thereby using the 
natural climatic transition along mountain slopes to 
simulate climate change (BrueLheiDe and fLintrOP 
2000; BrueLheiDe 2003; Körner 2005; cf. Fig. 4). 
Experiments on other types of global change-related 
factors include artificial fertilisation (to account for 
changes in atmospheric chemistry) or fencing (to 
manipulate grazing impacts, thus simulating land 
use change). Field research can also be complement-
ed with growth chamber experiments, which have 
rarely been applied for studies on mountain ecosys-
tems (e.g., LOKuPitiyA et al. 2000; mArty et al. 2009). 

Global change research cannot be conducted 
without modelling. Models allow projections of sys-
tem states for global change scenarios. They inte-
grate data from observations and experiments, gen-
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erate hypotheses motivating new observational and 
experimental approaches, and allow an interdiscipli-
nary approach to be employed by using mathematical 
equations as a common language. Modelling gener-
ally covers a range of approaches, starting either with 
the description of patterns or processes (schröDer 
and sePPeLt 2006). 

In global change research, phenomenological/
statistical species distribution models (also referred 
to as environmental niche models or habitat models) 
have been successfully applied in landscape ecologi-
cal, biogeographical, and macroecological contexts 
for describing species distributions or species rich-
ness patterns, as well as in predicting range shifts 

Fig.	3:	Land	cover	patterns	on	a	high	resolution	(pixel	size:	5	cm)	aerial	photo	(a)	and	high	resolution	(pixel	size:	15	cm)	ther-
mal	surface	patterns	at	different	times	(b:	05-10-2007	14:30	and	c:	05-10-2007	18:30)	in	a	low	alpine	area.	The	real	colour	photo	
was	captured	by	a	simple	7	megapixel	digital	compact	camera	(Canon	Powershot	S70)	and	the	thermal	images	were	taken	
with	a	MIDAS	thermal	infrared	camera	(320	×	240	uncooled	microbolometer;	8	µm	to	14	µm).	The	cameras	were	attached	to	a	
simple	camera	platform	carried	by	a	helium	balloon.	All	images	were	taken	from	an	altitude	of 	approx.	200	m	above	ground.	
The	raw	pictures	were	orthorectified	based	on	a	precision	(about	10	cm	accuracy)	digital	elevation	model	that	was	generated	
from	aerial	stereo	pictures	from	the	same	field	campaign	(Wundram and LöffLer	2008).	Simplified	topographic	conditions	
are	illustrated	by	one	meter	interval	contour	lines	extracted	from	the	digital	elevation	model



200 Vol. 65· No. 2

(e.g., guisAn and theuriLLAt 2000; DirnBöcK 
and DuLLinger 2004; nOgués-BrAvO et al. 2008; 
triveDi et al. 2008; vOn Dem Bussche et al. 2008). 
To overcome limitations, such as the lack of direct 
implementation of ecological processes and biotic in-
teractions, as well as the underlying equilibrium as-
sumption (for a general discussion, cf. PeArsOn and 
DAWsOn 2003; ArAúJO and guisAn 2006; ZureLL et 
al. 2009), more mechanistic approaches have been 
developed recently (e.g., AnDersOn et al. 2009; in a 
general context, cf. Keith et al. 2008; KeArney and 
POrter 2009). Here, distribution models are linked 
with process-based approaches. 

Process-based models have been very success-
fully applied in describing population dynamics or 
forest dynamics responding to all aspects of envi-
ronmental change in mountain areas, explicitly con-
sidering species interactions, dispersal, and other 
processes (e.g., LischKe et al. 1998; WeisBerg et al. 
2005; rAmmig et al. 2006; BugmAnn et al. 2007; 
WALLentin et al. 2008; DisLich et al. 2009). These 
kinds of models provide a mechanistic understand-
ing of and deep insights into processes (e.g., grimm 
et al. 2003; ricKeBusch et al. 2007b). Therefore, they 
enable sound predictions of future developments 

and reconstruction of past developments to be car-
ried out (e.g., BugmAnn and Pfister 2000; LischKe 
2005; heiri et al. 2006). 

The dynamics and interactions of water, carbon, 
vegetation, disturbances, and land use need to be 
considered in process-based ecosystem models and 
in integrated landscape models, which is the next 
logical step to achieve a mechanistic understanding 
of global change impacts on mountain landscapes. 
Promising examples of this are provided, for in-
stance, by ZierL and BugmAnn (2005), LischKe et 
al. (2007), schumAcher et al. (2006), quétier et al. 
(2007), ricKeBusch et al. (2007a), ZierL and BugmAn 
(2007), ALBert et al. (2008), and schröDer et al. 
(2008).

A large range of scales is involved in assessing 
the impact of global change on mountainous ecosys-
tems. Global driving forces, such as climate change, 
are supplemented by demographic and economic 
changes on regional to local scales. Therefore, mod-
elling efforts must consider these scale issues, espe-
cially because GCM outputs cannot be used directly 
for local-scale impact assessment. Downscaling (e.g., 
xu 1999; BenestAD 2002; steinAcKer et al. 2006; 
quiAn 2010) is an important issue when analysing 

Fig.	4:	Transplantation	of 	1.5*1.5*0.5	m³	monoliths	to	a	lower	altitude	(Vågå/Oppland,	Norway,	summer	2008)
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the impact of climate change on mountain ecosys-
tems, but this is challenging because these systems 
are characterised by extreme small-scale heterogene-
ity (ihse 2007; PAPe et al. 2009). Although most sce-
narios agree regarding the warming of mountains, 
the future development of precipitation is often 
unclear. Modelling frequently concentrates on large 
spatial scales and long-term effects on factors such 
as water availability (e.g., BArOntini et al. 2009). The 
challenge is to model the impact of global change on 
local (micro and meso) scales, including soil moisture 
patterns and their temporal dynamics as important 
factors for local energy balance and plant growth.

Programmes and networks that support the im-
plementation of mountain research are often highly 
specialised. For instance, a focus on biodiversity and 
vegetation is shown in the GMBA (Global Mountain 
Biodiversity Network) and the associated initia-
tives GLORIA (Global Observation Research in 
Alpine Environments, e.g., PAuLi et al. 2005) and 
MIREN (Mountain Invasion Research Network, 
e.g., PAuchArD et al. 2009). Changes in glaciers are 
addressed by the WGMS (World Glacier Monitoring 
Service) with its Global Terrestrial Network for 
Glaciers (GTN-G), while permafrost issues are 
dealt with by the IPA (International Permafrost 
Association) and its GTN-P (Global Terrestrial 
Network for Permafrost). CEOP-HE (Coordinated 
Energy and Water Cycle Observation Project – High 
Elevations) concentrates on energy and water cycles 
in mountains. The sometimes unidimensional fo-
cus of these research networks and organisations is 
frequently reflected in highly specialised research. 
However, an ecosystem approach demands inte-
gration across compartments, such as the atmos-
phere, hydrosphere, cryosphere, pedosphere, and 
biosphere, with all disciplines focussing on the 
same functional phenomena (cf. mArgrAf 1987). 
Accordingly, interdisciplinarity is recommended by 
e.g., the MRI (Mountain Research Initiative, BecKer 
and BugmAnn 1997, 2001; cf. GLOCHAMORE 
Research Strategy, e.g., grABherr et al. 2005; 
Price et al. 2006), CIRMOUNT (Consortium for 
Integrated Climate Research in Western Mountains), 
and NOROCK (Northern Rocky Mountain Science 
Center). This recommendation might appear self-
evident, but so far, large interdisciplinary research 
projects on global change in mountains have been 
rare. Exemplary exceptions are (i) the CLIMET 
Project, in which research on climate, biology and 
hydrology in mountain areas along a continentality 
gradient in the northwestern USA are incorporated 
(fAgre et al. 2007), and (ii) a current study on gra-

dients in tropical mountain ecosystems and their 
anthropogenic replacement systems in Ecuador, 
combining research on patterns and processes re-
lated to climate, soils, water relations, biodiversity, 
vegetation, fauna, disturbances, and land use (BecK 
et al. 2008; BenDix and BecK 2009; DisLich et al. 
2009; www.tropicalmountainforest.org). 

In conclusion, we suggest future research on 
mountain ecosystem response to global change to 
account for the following aspects simultaneously: 

 – multi-factor studies: taking various global change 
triggers into account (climate change, land use 
cover change, change in atmospheric chemistry, 
etc.);

 – an integrative, multi-method approach: linking 
experiments, observations, and problem-specific 
models; 

 – multi-scale research: conducting studies across 
various spatial (micro, meso, macroscale) and 
temporal (long-term research, high temporal re-
solution) scales;

 – interdisciplinarity: focussing on the same func-
tional phenomena, taking a large set of driving 
factors of natural and human systems and their 
feedbacks into account and considering effects on 
different aspects of the socio-ecological system.

Ultimately, complex studies are required to ful-
fil the standards of truly comparative mountain re-
search. This is still not an easy task, and attempts 
to do this have often not led to a set of integrated 
conclusions. We therefore advise conducting local-
ised studies across different mountain areas, cover-
ing various factors, methods, and scales, in which 
experts on natural and human systems should for-
mulate common research questions to be dealt with 
in the same study area.
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