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Summary: Fluvial geomorphologists have tried to describe the outstanding tectonically affected avulsion process of  Tisza 
River at the Great Hungarian Plain by various theoretical concepts. Flume experiments provide the ability to examine the 
main characteristic processes of  a highlighted surface development theory under controlled settings within an accelerated 
time scale. Our goal was to reconstruct and refine these hypotheses from a new experimental point of  view. Contrary to the 
previous flume studies focused on a highlighted mechanism, our experiment combined several processes for confirmation 
purposes. In this study we performed an experiment of  the avulsion process mentioned above on a 12 x 5 x 2.5 m flume 
where a special instrument was planted under the sand layers in order to simulate the vertical tectonic movements. A ter-
restrial laser scanner was used to record the different stages of  the topographic evolution. We shaped the initial surface and 
executed the main landscape forming processes according to theoretical descriptions then with modifications to examine 
the similarities and differences between the experimental outcomes and the theoretical evolution. The results of  three dif-
ferent types of  scenarios proved the key role of  the uplifting Nyírség alluvial fan in the channel direction changing process 
of  Tisza River. On the other hand, the role of  Bodrogköz area had been questioned. Flume experiments with appropriate 
equipment can serve as a suitable tool for the reconstruction of  surface development theories taking into account several 
landscape forming processes simultaneously.

Zusammenfassung: Die außergewöhnliche, tektonisch bedingte Flussverlagerung der Theiß in der Großen Ungarischen 
Tiefebene beschäftigt die Fluvialmorphologie seit Langem und hat zu unterschiedlichen theoretischen Erklärungsansätzen 
geführt. Experimente in Versuchskanälen bieten die Möglichkeit, grundlegende Prozesse der Fluss- und Oberflächenge-
nese einzelner theoretischer Ansätze unter kontrollierten und zeitlich beschleunigten Bedingungen zu untersuchen. Das 
Ziel der vorliegenden Studie bestand darin, die Hypothesen der Theiß Flussverlagerung von einer experimentellen Seite 
aus zu beleuchten. Angesicht der Komplexität der vorliegenden theoretischen Konzepte, bestand im Unterschied zu zahl-
reichen anderen Versuchskanalexperimenten, die Herausforderung dieser Studie in der Simulation eines multifaktoriellen 
Prozessgefüges. Die Experimente wurden in einem 12 x 5 x 2,5 m Versuchskanal durchgeführt, der durch einem Umbau so 
modifiziert wurde, dass unterschiedliche Zonen angehoben und abgesenkt werden können, um tektonische Bewegungen 
zu simulieren. Unterschiedliche Stadien der Oberflächengenese wurden mit einem terrestrischen Laserscanner erfasst. Aus-
gehend von einer initialen Oberfläche und wurden die Experimente entsprechend der theoretischen Konzepte durchlaufen 
und für Vergleichszwecke ergänzt durch Versuchsläufe mit leicht modifizierten Rahmenbedingungen. Im Ergebnis belegen 
die durchgeführten Experimente übereinstimmend die besondere Rolle von Hebungsprozessen der Nyírség Region für die 
Flussverlagerung der Theiß. Im Gegensatz zu vorliegenden theoretischen Erklärungsansätzen konnte allerdings die Bedeu-
tung tektonischer Prozesse im Bodrogköz Gebiet nicht belegt werden. Anhand der vorliegenden Studie konnte aufgezeigt 
werden, dass sich technisch entsprechend angepasste Versuchskanäle auch für die experimentelle Analyse komplexer fluvi-
almorphologischer Fragestellungen eignet.
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1 Introduction

Geomorphological investigations, especially in 
fluvial geomorphology, have always been based on 
various field surveys with the purpose of examin-
ing landforms, processes and their driving factors 
at their specific geographical location (sLaymaker 

1991; thorndyCraFt et al. 2008). Increasingly, ex-
perimental geomorphological methods have been 
applied, as scientists realized its benefits (WiLLiams 
1971; sChumm et al. 1987; PaoLa et al. 2009). The 
main purpose of the experimental geomorphologists 
is to give analytical explanations for fundamental ge-
omorphic questions, since exact processes cannot be 
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observed directly. In laboratory conditions with the 
use of specially designed apparatuses, the reproduc-
tion of fluvial surface development processes could 
play a key role in both the creation and the clarifica-
tion of theoretical concepts (PeakaLL et al. 1996).

Hardware simulation facilities (e.g. river mod-
eling flumes, hydraulic flumes, stream tables, sand 
tables, sand boxes, plotting boards) allow precise ex-
periments that can be controlled and reproduced in 
order to perform different scenarios for a concrete 
fluvial process (sChumm et al. 1987). The compres-
sion of the spatial and temporal scales makes it possi-
ble to observe landform development otherwise im-
possible to observe directly in the field (mCkenna 
neuman et al. 2013). Moreover, experimental ma-
nipulation is also ensured; thus, the effect of several 
driving variables can be simulated in a selected range 
(e.g. aCkers 1964; LisLe et al. 1991; Bennett and 
BridGe 1995; Van dijk et al. 2012).

Since the early experiments of GiLBert (1914) 
hydraulic flumes have been operated by flow and 
sediment supply similar to natural rivers; however, 
such factors as e.g. sidewall roughness, shape of bank 
or-, slope differs from conditions that can be found 
at the surface. Small-scale experiments on meander-
ing and river morphology were introduced for the 
first time by Friedkin (1945) and later LeoPoLd and 
WoLman (1957). During the 1960s and 1970s numer-
ous fluvial laboratory facilities were developed on 
the basis of cooperation of river engineers and fluvial 
geomorphologists (e.g. kádár et al. 1957; kinoshita 
1957; WoLman and Brush 1961; aCkers 1964; Guy 
et al. 1966; hiCkin 1972; sChumm and khan 1972). 
Moreover, many study areas in fluvial geomorphol-
ogy, including meandering channels (smith 1998; 
PeakaLL et al. 2007; rüther and oLsen 2007; 
termini and Piraino 2011; Van dijk et al. 2012), 
meander cutoffs (Le Coz et al. 2010), braided chan-
nels (eGozi and ashmore 2009; PirkhoFFer et al. 
2014), drainage systems (douGLass and sChmeeCkLe 
2007), point bar development (LisLe et al. 1991; 
Lanzoni 2000), delta development (muto and steeL 
2001, 2004; PirkhoFFer et al. 2014), valley devel-
opment (marra et al. 2014) or landslides (okura 
et al. 2002), have been studied using experimental 
approaches.

Beyond investigations focused on the sub-
ject of rivers, other indirect surface development 
processes, such as the formation of alluvial fans 
in the vicinity of mountainous regions also need 
experimental explanations (hooke and rohrer 
1979; Parker et al. 1998). Flume based results as-
sociated with alluvial fans and deltas are  proven 

solutions for demonstrating sediment transport 
(WhiPPLe et al. 1998; Postma et al. 2008) and evo-
lutional dynamics (Van dijk et al. 2009; CLarke 
et al. 2010) according to various impacts (Viseras 
et al. 2003; niChoLas and Quine 2007a, b). Fluvial 
response to tectonic uplifts has been investigated 
from several aspects (e.g. ouChi 1985; LaGue et al. 
2003; GraVeLeau et al. 2011). Several studies have 
been focused on mathematical modeling involving 
physical parameters on these topics (e.g.; BeVen 
and kirkBy 1979; CouLthard et al. 1999; 2002; 
hoWard 1994), but all of them have concentrated 
on only a highlighted process in contrast with a 
multiple evolutionary approach.

The main concept of this study was to prove 
that flumes are suitable tools for modelling complex 
surface development processes and also to confirm 
mesoscale landscape development theories.

Accordingly, we combined several experimen-
tal approaches related to fluvial geomorphology: 
avulsion process, alluvial fan development, and tec-
tonically affected vertical surface movements; un-
like the research reported in the works listed above. 
Furthermore, a complex and remarkable avulsion at 
an alluvial section of the Hungarian Tisza River in 
the past has raised several questions and discussion 
between geomorphologists; thus, we attempted to 
examine it in a flume in order to refine and confirm 
it. With this study we intended to demonstrate the 
applicability of a flume for a multiple experimental 
model of a surface development theory.

2	 Theoretical	 background	 of 	 the	 flume	 ex-
periment

The surface and fluvial system development of 
the Great Hungarian Plain (GHP), which is an in-
tramountain basin in Hungary, has detailed theo-
retical description (Borsy and FéLeGyházi 1983; 
Borsy et al. 1989; Borsy 1995; GáBris 1995, 2002; 
FéLeGyházi et al. 2004; timár et al. 2005; Vass et 
al 2010; GáBris and nádor 2007; demeter et al. 
2010, 2011; GáBris et al. 2012; szaBó et al. 2012; 
kiss et al. 2014).

At the northeastern part of the GHP the Tisza 
River and its tributaries, the Szamos River and the 
Paleo-Bodrog Rivers built an extensive alluvial fan 
called the Nyírség (Fig.1/A) (Borsy 1961, 1989, 1990). 
During the Pleistocene, the Tisza River flowed from 
the Carpathians through the Érmellék and reached 
the Danube River at the Körös Basin (Fig.1/A,B; 
GáBris 1995; GáBris and nádor 2007).
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The shifts up to 80–100 km in flow direction 
of the Tisza River are based on major and second-
ary subsiding – uplifting basins (e.g. Bodrogköz, 
Bereg Plain, Érmellék) driven by Quaternary tec-
tonic processes (timár et al. 2005; kiss et al. 2014). 
Furthermore, some areas like the Nyírség had a 
lesser degree of subsidence than others; this pro-
cess could be observed as a relative uplift. Later it 
started to uplift separately, emerging later as a di-
vide (Borsy et al. 1989). The intensive subsidence 
of the Bodrogköz and the Bereg Plain started in 
the Upper Pleniglacial at ca. 22 ka (Borsy et al. 
1989) and their rate reached 0.33 mm/y on average. 
However, it is suggested that sometimes this rate 
was up to 0.8 mm/y (Borsy 1989; FéLeGyházi et 
al. 2004). A slight shifting of the Tisza River east-
wards to the Érmellék occurred at the beginning of 
the Weichselian (Borsy 1989). As a result, the Tisza 
River assumed a higher position at the Nyírség al-
luvial fan; thus, the river started to slide from its 
central section (Borsy 1989); however, timár et al. 
(2005) argue that there must have been an addition-
al abrupt avulsion of the Tisza River.

The outstanding avulsion process of the Tisza 
River was suggested at ca. 20 ka (Borsy et al. 1989), 
ca. 16–18 ka (timár et al. 2005) and ca. 14 ka (GáBris 
and nádor 2007) when the Tisza was forced to turn 
northward and leave the Érmellék (Fig. 1/C) due 
to the intensive shifting period of Bodrogköz and 
the relative uplifting period of the Nyírség and the 
Érmellék (Borsy et al. 1989; GáBris 2002; Lóki and 
FéLeGyházi 2008; demeter et al. 2010, 2011). When 
the Tisza River started to capture the rivers of the 
Paleo-Bodrog system, the Nyírség alluvial fan had 
been left without water supply from large rivers (Fig. 
1/D); thus, aeolian processes began in the dry ar-
eas after the fluvial processes had ended (Lóki et al. 
1994; kiss et al. 2012, 2014). Since the last glacial 
period, the fluvial system of the GHP including the 
Tisza River has been stable except for some minor 
avulsions (kiss et al. 2014) (see also Fig. 2). In this 
study we conducted flume experiments in order to 
reveal whether this approach can confirm the the-
oretical concepts. Accordingly, our flume setups 
were designed for comparing the theoretical and 
experimental avulsion processes on the paleo-Great 

Fig. 1: Paleo-direction changes of  the main Hungarian rivers during the Pleistocene. A: from Middle to Late 
Pleistocene (dotted areas indicate the major alluvial fans, NY – Nyírség Alluvial fan): B: beginning of  the Weich-
selian. C: Late Weichselian. D: Holocene. Source: Somogyi, 1961; gábriS and Nádor 2007; Mezősi 2011; KiSS et al. 
2014
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Hungarian Plain. Our main goal was to prove that 
changes in flow direction were induced by vertical 
processes. The main question was whether changes 
in flow direction induced by vertical tectonic pro-
cesses can be reconstructed.

3 Materials and methods

3.1 Flume parameters

Our experiments were held at our departmental 
fluvial laboratory that has a large flume which is a 
12 meters long, 5 meters wide and 2.5 meters deep 
concrete-based basin (Fig. 3). It has a slight slope 
for the natural river runoff-processes and it is filled 
with sand on a 7 m long and 4 m wide area. Six taps 
had been planted in the margins (Fig. 3/1), which 
have their own water-meters; thus, the discharge of 
a flow can be precisely measured and we can set up 
rivers to any location in the flume using hose-pipes. 
Each flow and its discharge can be controlled to imi-
tate the effects of climatic factors, flow regime or 

the flood periods, etc. A special instrument that can 
simulate tectonic movements was situated under the 
sediment layers and its operation was controlled by a 
compressor. Eight parts of the instrument could be 
raised and sunk by the compressor separately as well 
as the connected areas (Fig. 3).

3.2	Concept	of 	the	experiment

Our experimental perspective was to shape the 
surface of the flume considering the determining 
elements of the paleo-surface of the investigated 
area in order to replicate the natural processes and 
the theories describing them. Then we tried to 
simulate the surface development and the avulsion 
process of the Tisza River related to the theoretical 
concepts.

At the northeastern side of the flume, we accu-
mulated a considerable amount of material to sym-
bolize the North-Eastern Carpathians. We situated 
two main flows symbolizing the Tisza River and its 
tributary Szamos River at the topside of this elevated 

Fig.	2:	The	theoretical	avulsion	of 	the	Tisza	River	(modified	after	Timár et al. 2005) – topographic data: SRTM
1 – Paleo-channel of  the Tisza River, which switched  from the Érmellék to the West to its present course; 
2	–	Present	channel	of 	the	Tisza	River	after	the	avulsion	next	to	the	subsided	Bodrogköz	area;	3	–	The	
elevated Nyírség alluvial fan area
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surface. At the beginning of the experiment we did 
not use preformed river channels, since we wished to 
demonstrate an entire individual development of the 
flow direction. From this stage, the forming of a con-
siderable alluvial fan like that of the Nyírség could 
be predicted at the base level with large amounts of 
material displacement and valley development from 
the top of the elevated surface. Following the alluvial 
fan development, our goals were to simulate the in-
tensive shifting of the Bodrogköz and the uplifting 
process of the Nyírség using the tectonic instrument 
of the flume and, based on the theory, to observe the 
probability of the avulsion of the Tisza River accord-
ing to these tectonic conditions.

With the purpose of focusing on the tectonically 
affected avulsion we set up a constant 0.2 l/s and 
0.1 l/s discharge rate of flow symbolizing the Tisza 
River and Szamos River; thus, the climatic factors 
were excluded from the experiments. The discharge 
rates were scaled according to the estimations of 
GáBris (1986). There was no sediment feed planted 
to the margin; thus, the running water scoured out 
the sand that was stored in the flume.

In order to verify the relationship between the 
theory and the experimental outcome of the theo-
ry-based scenario (Scenario #1), we examined two 
modified scenarios as well, where the conditions had 
differed from the original theory. The second sce-

nario was performed without the tectonic sinking 
of the Bodrogköz area in order to analyze its role 
in the avulsion process (Scenario #2). Finally, in a 
third scenario, the alluvial fan of the Nyírség showed 
a moderate degree of sinking (Scenario #3).

The geodetic survey of our scenarios were divid-
ed into three major stages. Every experiment stage 
lasted 15 minutes; however, each of them was paused 
during the surveying process in order to ensure the 
recording of a momentary state of the surface devel-
opment. Each stage was investigated separately dur-
ing the data processing. At the beginning an initial 
surface was shaped as it was described above. The 
second stage represents the alluvial fan development 
while the last stage refers to the processes of tectonic 
shifting/uplifting as well as the possible formation 
of avulsion on the Tisza River.

As a first step, we reconstructed the environmen-
tal conditions for each scenario (surface topography, 
discharge rate and tectonic movements), then we 
performed the experiment consecutively five times 
consecutively, to ensure that the final results could be 
repeated without significant change and that this did 
not occur by chance. As all repetitions resulted in the 
same outcome, we found it eligible for the survey.

A Leica ScanStation C10 terrestrial laser scan-
ner (TLS) was used for collecting high precision 
(<cm) digital surface models, as reference data for 

Fig.	3:	Schematic	view	of 	the	experimental	flume.	1	–	Water	taps	with	water	meters;	2	–	Hose-
pipes	used	for	setting	up	the	experimental	flows	to	the	appropriate	location;	3	–	Instrument	
for demonstrating the tectonic movements
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the experimental scenarios. These kinds of datasets 
allowed us to analyze the possible flow directions 
that could be formed according to the surface de-
velopment processes during the experiment. The 
point cloud, generated by the TLS was processed 
and cleaned in a metric coordinate system using 
Leica Cyclone 7.3 software. Each survey of the ex-
periment stages resulted in a point cloud with 2618 
x 6284 points. For the spatial analysis the point 
cloud was interpolated into elevation grid in Surfer 
10. The chosen method was kriging, with 0.8 cm 
cell size. Spatial analysis (e.g. cross sections, flow 
directions) of the different surface models were 
performed in ArcGIS 10.3, Surfer 10 and SAGA GIS 
2.1 (Conrad et al. 2015).

4 Results 

We started the experiment from the initial 
surface (Fig. 4; Fig 5/A-D-G) where the two main 
flows of the Tisza and Szamos Rivers were posi-
tioned at the top of the elevated surface that cor-
responded to the Carpathians situated at the north-
eastern edge of the flume. On figure. 5/A-D-G we 
also illustrated the possible flow directions where 
two paths (which are connected to the flow-heads) 
were highlighted and could be maintained as the 
possible paths of the Tisza and Szamos Rivers. 

According to theory, the Bodrogköz played a 
key role in the avulsion process of the Tisza River; 
hence, the representing model area has been uplifted 
prior to model runs in order to move it downward 
according to the different scenario description. The 
first stage of each scenario lasted 15 minutes with 
constant discharge without sediment supply.

During all of the scenarios the second stage re-
sulted in a considerable amount of material displace-
ment (Fig. 5/B-E-H). Both erosional and accumu-
lation processes occurred along the experimental 
Tisza and Szamos Rivers and both flows generated 
V-shaped valleys at the steep slopes of the mountain-
ous northern part of the flume (Fig. 4; Fig. 5; Fig. 
6-7/S01-S05-S09). 

The sediments transported from the elevated 
positions were accumulated at the plain region di-
rectly beside the slope of the mountainous region. At 
first, a single regular-shaped alluvial fan was formed 
by the two flows at the central and eastern part (cor-
responding to the Érmellék) of the flume (Fig. 4/B; 
Fig. 5/B-E-H). The cross-section analysis of the ex-
periment stages (Fig. 6; Fig. 7) determined that the 
alluvial fan development caused an increase up to 10 
cm in height compared to the initial surface in each 
scenario. 

The process showed the typical characteristics 
of an alluvial fan development while the flows were 
continuously shifting their paths back and forth (5-

Fig.	4:	The	main	processes	during	the	experimental	surface	and	flow	evolution	in	Scenario	#1.	The	arrows	represent	the	domi-
nant	flow	directions	during	the	experiment.	A	–	Initial	surface;	B	–	Accumulation	and	alluvial	fan	development	followed	by	
the	tectonic	uplifts/shifts;	C	–	Result	of 	the	experiment	with	the	avulsion	of 	the	main	flow;	T	–	Tisza	River;	Sz	–	Szamos	River
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Fig.	5:	Possible	flow	directions	calculated	from	the	DSMs	in	each	stage	of 	the	Scenarios.	T	–	Tisza	
River; Sz – Szamos River
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Fig.	6:	Cross-sectional	analysis	of 	the	experiment	stages
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Fig.	7:	Cross-sectional	analysis	of 	the	experiment	stages
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15 cm horizontally) on the surface so as to fill the 
lower parts of the plain area. A Hillshade model (Fig. 
5/B,C,E,F; Fig. 6; Fig. 7.) can provide evidence that 
the main flow direction of the Tisza River faced to-
wards the Érmellék especially after a minor second-
ary alluvial fan also formed at the western side after 
the central plain region had filled up with sediments. 

Following the second stage, we performed the 
tectonic operations for Scenario #1 in two stages. 
First, we started the slow uplift of the central Nyírség 
alluvial fan with the rate of 0.02 cm/s. Afterwards, 
we simultaneously implemented the intensive sink-
ing (0.1 cm/s) of the Bodrogköz area, then we main-
tained these conditions until the end of the stage so 
as to reproduce a similar process of the theory. The 
uplift and sinking rates were calculated as the ratio 
of the height difference and the time elapsed during 
the scenario, since we had no instrument to measure 
their exact velocities. According to the cross section 
analysis the tectonic uplift rate of the Nyírség allu-
vial fan was about 16–18 cm while the sinking rate 
of Bodrogköz was about 14–16 cm (Fig. 6/S02-S03). 
By the end of the experiment, as a result of these 
operations the avulsion of the Tisza River occurred 
abruptly towards the western part of the flume after 
the sinking of Bodrogköz (Fig. 4/C; Fig. 5/C) simi-
larly to the assumed concept; however, the Szamos 
River did not collide into the Tisza River (the stre-
ambed shift was measured to be approximately 1.1 m 
horizontally; Fig. 5). 

In the first modified scenario (Scenario #2) we 
omitted the sinking process of the Bodrogköz area 
throughout the experiment. (Fig. 6/S06-S07). In 
Scenario #3, the rate of sinking in the Bodrogköz area 
was less (about 10–12 cm, 0.01 cm/s) (Fig. 6/S10-S11), 
than it was in Scenario #1, and we performed the tec-
tonic uplift of the Nyírség alluvial fan intermittently 
up to 13–15 cm (0.014 cm/s) during the last stage of 
the experiment; however, it reached almost the same 
height as was measured in Scenario #1 (16–18 cm). 
By the end of the modified scenario-based experi-
ments, none of the modified scenarios resulted in the 
avulsion of the Tisza River, because it remained at the 
eastern side of the Nyírség alluvial fan.

5 Discussion

The flow direction modelling revealed that the 
main flow direction of the Tisza River was approxi-
mately straight along the Nyírség alluvial fan; how-
ever, minor flows were able to reach the western 
parts (Fig. 5/B). Thus, a slight shifting to the west-

ern side of the alluvial fan had started which fits to 
the theory of Borsy (1989) as the flow of the Tisza 
River came to a higher position because of the de-
velopment of the Nyírség alluvial fan, and started 
to leave its central area (Fig. 8/1 proved). Since the 
alluvial fan extended to the Bodrogköz area, it in-
hibited the Tisza River from flowing towards the 
western part of the flume for a while during this 
stage. 

The second stage of the scenarios resulted in a 
major alluvial fan of the Tisza River and minor fans 
(Fig. 4/B; Fig. 5/B) related to the Szamos River as 
Borsy (1961, 1964) and Borsy et al. (1969, 1989) de-
scribed it earlier (Fig. 8/2 proved). At the end of the 
second stage in Scenario #1, we performed the verti-
cal tectonic processes which resulted in surface con-
ditions similar to those described previously (Borsy 
et al. 1989; demeter et al. 2010, 2011; GáBris 2002; 
timár et al. 2005; Lóki and FéLeGyházi 2008; kiss 
et al. 2014). The comparison between the theoreti-
cal avulsion process of the Tisza River assumed by 
timár et al. (2005) and the result of the experimen-
tal approach showed several similarities (Fig. 5/C; 
Fig. 9). At the end of the experiment slight run-
offs reached the Érmellék region, but the emerged 
Nyírség alluvial fan became a watershed divide 
(Fig. 5/C), which then diverted the significant part 
of the flows towards the western part of the flume. 
However, a few minor flows remained at the eastern 
part, as kiss et al. (2012, 2014) and Lóki et al. (1994) 
have already suggested. Furthermore, we noticed 
that the Szamos River did not become a tributary 
of the Tisza River after the avulsion of the Tisza 
River (Fig. 5/C; Fig. 9). It was observed by other 
studies that avulsion occurs when i.e. a pre-existing 
abandoned channel can be reached easily (asLan 
and BLum 1999; sLinGerLand and smith 2004) or 
if the channels are elevated enough to collide (zarn 
and daVies 1994; mohriG et al. 2000; FieLd 2001; 
CazanaCLi et al. 2002; jeroLmaCk and PaoLa 2007). 
In this case, the Nyírség alluvial fan was overly ele-
vated only in Scenario #1, and therefore the channel 
of the Szamos River was not able to reach the Tisza 
River and potentiate the avulsion process, while the 
former alternating channels had been already accu-
mulated (Fig. 8/4 partially proved).

We have also examined the differences that 
resulted from the modified settings of Scenarios 
#2 and #3. In Scenario #2 narrow secondary flow 
paths from the direction of the mountainous region 
had been formed, but the tectonic sinking process 
of the Bodrogköz region had been totally omitted. 
This process lacking connections among these nar-
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row channels, caused the main channel of paleo-
Tisza to incise towards the eastern part of the flume. 
It appears that, with an increased uplift, the direc-
tion of the Tisza River could have been also turned 
towards the western part. However, in this case the 
distance of the Tisza River and the Nyírség alluvial 
fan was smaller than described by Borsy (1989).In 
other words, streambed shifting (i.e. avulsion) of 
the Tisza River was able to show a two times less 
rate (Fig. 5/E,F). 

Scenario #3 demonstrated an intermittent tec-
tonic uplift process of the Nyírség alluvial fan and 
a moderate sinking of the Bodrogköz area. These 
movements collectively resulted in a continuous 
shifting of the streambed eastwards (Fig. 5/H,I). 
This can be explained by the discontinuous slow 
uplift inhibiting displacements westwards.

The two modified scenarios, where the subsidence 
of the Bodrogköz area was skipped or the subsidence 
rate was more moderate, both pointed out that, without 
this type of tectonic sinking, the Tisza River would had 
been able to change its path towards the western part 
of the plain if the tectonic uplift of the Nyírség alluvial 
fan would had been more intensive. This differs from 
the theory of Borsy (1989), who described the sinking 
Bodrogköz area as a necessary condition for the avul-
sion of the Tisza River.

Since it is not possible to remodel the original spatial 
conditions of the surface during the Late Pleistocene ac-
curately, our experimental surface development scenario 
is not a topographically exact reconstruction of the natu-
ral process that occurred at the GHP related to the Tisza 
River. However, we demonstrated the main character-
istic processes that could serve as evidence for already 
published former conceptions (Borsy et al. 1989; timár 
et al. 2005; GáBris and nádor 2007). The combination 
of different types of experimental methods in one flume 
enabled us to simulate the evolution of large alluvial fans 
of the Tisza River and Szamos River, among which the 
most extensive one, the Nyírség area, played an impor-
tant role in the avulsion process. The tectonic uplift of 
the Nyírség proved to be the determining factor for the 
abrupt channel change of the Tisza River, while the pre-
viously suggested essential role of the Bodrogköz area 
has to be questioned (Fig. 8/3 partially proved).

Though several other studies (LisLe et al. 1991; 
smith 1998; rüther and oLsen 2007; Van dijk et al. 
2009, 2012) already proved that simple flumes can be 
used to investigate separate processes, we still had to 
carry out a new methodological development for the 
flume of our extended purpose. Originally, the flume 
did not contain any possibility for tectonic modelling, 
but our device was re-designed specifically for this pur-

Fig. 8: Flow chart representing the theoretical background 
of 	our	flume	experiments

Fig.	9:	Comparison	of 	the	theoretical	and	experimental	approaches
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pose. It was important to vary the elevation of the dif-
ferent surface sections in a short distance: while one part 
was uplifted, the other had to move downwards. Finally, 
as we were able to reconstruct the paleo-processes and 
the result corresponded with each stage of the theory 
and the current surface, we proved that flume experi-
ments can be suitable for the reconstruction of sur-
face development theories taking into account several 
landscape forming processes (alluvial fan development, 
tectonic uplifts, discharge) simultaneously. In the case 
of the Tisza River, by using a flume, and the appropri-
ate equipment, we were able to justify surface develop-
ment processes in mesoscale (ca. 32,000 km2) (Fig. 8/5 
proved). In addition, by designing new supplementary 
functions to this flume, the instrument can be used for 
practical applications i.e. more complex reconstruction 
of the Great Hungarian Plain could help in modeling 
the possible locations of water resources that could be 
connected with present hydrocarbon sites of the area as 
well. 

6 Conclusion

Previous studies have shown several uncertainties 
related to the theoretical descriptions of the fluvial sys-
tem evolution and surface development of the GHP. As 
a refinement, the complex progress of fluvial surface de-
velopment, including an avulsion, alluvial fan develop-
ment and tectonic uplifts/subsidences at an alluvial part 
of the GHP have been investigated using a new meth-
odological approach in a flume experiment.

In contrast to flume-based studies which focus on 
only one selected process, we performed an experiment 
that was able to confirm several parts of a multiple allu-
vial plain development theory. However, the three-stage 
flume experiment was not a topographically accurate 
reconstruction; rather, we confirmed the importance 
of the Nyírség alluvial fan and its tectonic uplift in the 
abrupt avulsion process of the Tisza River as it came to 
be a natural divide. 
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