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Summary: According to the Intergovernmental Panel on Climate Change (IPCC), all of  Africa is very likely to warm up more 
than the global average during this century. Especially (semi-)arid regions are expected to experience particularly high warm-
ing and possibly catastrophic droughts. However, assessments of  the impacts of  climate change on these regions are currently 
impeded by a lack of  transregional high temporal resolution proxy data for the African continent. Baobab trees are widely 
distributed in (semi-)arid Africa and can reach ages of  up to 2000 years. This pilot study was aimed at investigating African 
baobabs, Adansonia spp., from a site in Botswana using multiple dendroclimatological methods. Increment cores from 16 indi-
vidual baobabs growing on Kubu Island (20°53’ S, 25°49’ E), a granite pluton located in the Kalahari, were collected in June 
2011 to test for annual growth and the species’ utility for palaeoclimatic studies. Due to the particular wood fabric and relatively 
high water content, baobab increment cores were packed in air-tight opaque tubes and stored in a freezer to prevent drying and 
mould formation. The complicated wood anatomical structure was found to be analysed best using a microscope with incident 
UV light, allowing tree-ring boundaries to be distinguished. Nonetheless, potential differences in individual site conditions, as 
well as diverse tree ages, caused conventional dendrochronological crossdating to fail. Missing and false tree rings could be 
identified due to the strong relationship between tree-ring width and annual precipitation amount allowing the development of  
a preliminary 50 year-long baobab chronology (1960–2009). Subsequently, stable carbon and oxygen isotope analyses revealed 
significant correlations of  Δ13C and δ18O of  tree rings with climate data. Year-to-year isotope variability and trends were found 
to be in good agreement with established models of  fractionation. Intrinsic water-use efficiency has mainly increased over 
the study period (2–30 %). Despite the demonstrated high potential of  African baobabs as a valuable high-resolution climate 
archive, we conclude that more dendrochronological calibration studies are required at various sites in southern Africa. Further-
more, ecophysiological monitoring of  climate and stable isotope signal transfer from the atmosphere, through soil and leaves 
into the tree rings is necessary to fully understand tree-ring formation and climate response of  the African baobab.

Zusammenfassung: Laut Weltklimarat (Intergovernmental Panel on Climate Change, IPCC) wird Afrika sehr wahrscheinlich 
eine Erwärmung erfahren, die über dem globalen Mittel liegen wird. Speziell aride Gebiete sind durch eine hohe Erwärmung 
und mögliche katastrophale Dürren gefährdet. Den Einschätzungen der Auswirkungen des Klimawandels auf  diese Regionen 
steht aber derzeit ein großer Mangel an überregionalen, zeitlich hochaufgelösten und präzise datierten Proxy-Datenreihen für 
den afrikanischen Kontinent entgegen. Baobabs sind im (semi-)ariden Afrika weit verbreitet und können bis zu 2000 Jahre alt 
werden. Das Ziel dieser Pilotstudie war es, Afrikanische Baobabs, Adansonia spp., von einem Standort in Botsuana mit ver-
schiedenen dendrochronologischen Methoden zu untersuchen. Im Juni 2011 wurden 16 Baobabs auf  Kubu Island (20°53‘ S, 
25°49‘ E), einem Granitpluton in der Kalahari Botsuanas, Zuwachsbohrkerne entnommen, um zu testen, ob es sich bei den 
Zuwachszonen der Baobabs um Jahrringe handelt und, um ihre Nutzbarkeit für Paläo-Klimastudien zu untersuchen. Aufgrund 
ihrer besonderen Holzstruktur und dem relativ hohen Wassergehalt wurden die Zuwachsbohrkerne in luftdichte, lichtun-
durchlässige Röhren verpackt und so schnell wie möglich eingefroren, um Austrocknung und Schimmelbildung zu verhindern. 
Die komplizierte Holzanatomie lässt sich am besten mit einem UV-Licht-Mikroskop analysieren, das die Differenzierung der 
Jahrringgrenzen ermöglicht. Trotzdem führten potentielle Standort- und Altersunterschiede dazu, dass die Proben nicht auf  
konventionelle Art kreuzdatiert werden konnten. Der stark ausgeprägte Zusammenhang zwischen Jahrringbreite und Jahres-
niederschlag ermöglichte es aber, fehlende und falsche Jahrringe zu identifizieren und so eine vorläufige 50 Jahre lange Baobab-
Chronologie (1960–2009) zu erstellen. Die anschließende Analyse stabiler Kohlenstoff- und Sauerstoffisotope ergab signifi-
kante Korrelationen von Δ13C und δ18O der Jahrringe mit Klimadaten. Die jährliche Isotopenvariabilität und die Trends der 
Isotope sind im Einklang mit anerkannten Fraktionierungs-Modellen. Die intrinsische Wassernutzungseffizienz hat sich über 
den Untersuchungszeitraum überwiegend verbessert (2–30 %). Trotz des demonstrierten großen Potentials der Afrikanischen 
Baobabs als zukünftiges hoch-aufgelöstes Klimaarchiv kommen wir zu dem Schluss, dass es weiterer dendrochronologischer 
Kalibrierungsstudien an unterschiedlichen Standorten im südlichen Afrika bedarf. Darüber hinaus ist ein ökophysiologisches 
Monitoring des Transfers von Klimasignalen und stabilen Isotopen aus der Atmosphäre durch den Boden und die Blätter in 
die Jahrringe erforderlich, um die Jahrringbildung und die Klimareaktion der Afrikanischen Baobabs vollständig zu verstehen.
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1 Introduction

1.1 The need for climate proxies in southern Africa

Despite the awareness of tropical dry regions’ 
vulnerability to climate change, i.e. the shifting 
towards more arid conditions and thus an in-
creasing “climatological risk of desertification” 
(spinoni et al. 2015), the prediction of related ef-
fects at a regional and transregional scale remains 
challenging. High resolution continuous climate 
records are less abundant in the southern hemi-
sphere than north of the equator (mayewski et al. 
2004; neUkom and GerGis 2012), with a particu-
lar lack for interior southern Africa (maslin and 
Christensen 2007). As a consequence, current 
models have significant systematic errors in and 
around Africa, whose effects on climate projec-
tions are difficult to assess (IPCC 2007, 2013).

Since climate patterns vary at regional scale 
(niCholson and kim 1997), insufficient data from 
a region can lead to inadequate or misleading in-
terpretations (sletten et al. 2013). A screening 
for continuous, high temporal resolution palaeo-
climate records in the southern hemisphere suit-
able for palaeoclimate reconstructions by neUkom 
and GerGis (2012) revealed only 14 data sets for 
the entire African subcontinent (7 marine coral 
records, 2 tree-ring chronologies, 5 historical 
documents). None of these records extends fur-
ther than 1500 A.D. (neUkom and GerGis 2012). 
Nonetheless, these available proxies have been 
used to reconstruct decadal-scale variations in 
summer and winter precipitation for southern 
Africa over the last 200 years (neUkom et al. 
2013). A well-developed understanding of the nat-
ural variability underlying global climate change 
will require more and better records in southern 
Africa (sletten et al. 2013). 

The study of multi-centennial trees, archiv-
ing annual to seasonal climate signals, appears 
to be the most promising approach for studying 
the last millennial climate on the African conti-
nent. Relative to other comparable natural climate 
archives (i.e. lacustrine, marine and stalagmite 
records), woody plants with clear annual rings 
are uniquely widespread in areas where the lo-
cal climate imposes a single dormant season per 
year (hUGhes 2011), as it is the case for interior 
southern Africa. However, dendrochronology in 
the tropics is seriously hampered by the complex 
ring anatomy of many species, including the oc-

currence of indistinct growth rings (détienne 
1989; sass et al. 1995), growth ring anomalies 
(priya and Bhat 1998; tarhUle and hUGhes 
2002; heinriCh and Banks 2006) leading to 
problems in crossdating (BelinGard et al. 1996; 
FeBrUary and stoCk 1998) and in correlation 
with climatic data (FeBrUary and GaGen 2003). 
Nevertheless, species such as the Clanwilliam ce-
dar, Widdringtonia cedarbergensis (dUnwiddie and 
lamarChe 1980), the Bleedwood tree, commonly 
also known as Mukwa tree or Kiaat, Pterocarpus an-
golensis (stahle et al. 1999; FiChtler et al. 2004) 
and the Msasa tree, Brachystegia spiciformis, (troUet 
et al. 2001; troUet et al. 2006; troUet et al. 2010) 
have proven their value for dendrochronologi-
cal studies in southern African arid regions. The 
currently longest chronology of B. spiciformis from 
central Zambia, covers around 150 years (troUet 
et al. 2010), the tree-ring width chronology of P. 
angolensis from western Zimbabwe is around 200 
years long (therrell et al. 2006), and the long-
est tree-ring record of W. cedarbergensis from south 
western South Africa dates back to the mid 16th 
century (dUnwiddie and lamarChe 1980). In ad-
dition to ring widths, tree rings also provide cli-
matic information by the ratios of stable isotopes 
incorporated in their cellulose. The ratios are con-
trolled by a number of external factors (e.g. tem-
perature, relative humidity) and internal factors 
(e.g. stomatal conductance, photosynthetic rate) 
that are reasonably well understood (FarqUhar et 
al. 1982; roden et al. 2000; helle and sChleser 
2004; mCCarroll and loader 2004; treydte et 
al. 2004; seiBt et al. 2008).

The present study was aimed at investigat-
ing the African baobabs, Adansonia digitata and A. 
kilima, as potential new high-resolution climate 
archives for historical times, since they are widely 
distributed in (semi-)arid Africa (wiCkens 1979) 
and can reach ages of almost 2000 years (patrUt 
et al. 2013). 

1.2 The African baobabs (Adansonia digitata / A. kilima)

With their enormous size and their distinc-
tive and often bizarre appearance, the African 
baobabs have attracted the attention of many re-
searchers of various disciplines (adanson 1759; 
livinGstone 1868; poCk tsy et al. 2009; riedel 
et al. 2012). The species are geographically distrib-
uted in (semi-)arid and partly semi-humid tropical 
Africa south the Sahara (wiCkens 1979; Fig. 1a). 
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Adansonia digitata shows a wide range of pheno-
typic variability regarding inter alia stem height, 
bark colour, f lowering times, leaf and fruit mor-
phology, suggesting numerous local types. A re-
cent phylogenetic study identified a new species, 
A. kilima, that co-exists with A. digitata in south-
eastern and southern Africa (pettiGrew et al. 
2012). Baobabs are typically present in areas with 
150–800 mm average annual rainfall and from al-
titudinal ranges close to sea level to about 1.500 m 
(Fenner 1980; wiCkens 1982; wiCkens and lowe 
2008; personal observation). They grow either 
solitary, in small groups or dense clumps with a 
closed or almost closed canopy (wilson 1988). 
As stem succulents, baobabs store huge amounts 
of water within their trunk. The wood is soft and 
weak with a very high parenchyma content. The 
typical large stem diameters and stout branches of 
wide roundish crowns might therefore be a biome-
chanical compromise to ensure inherent stability 
(Chapotin et al. 2006b). Physiological processes 
such as leaf f lushing and buffering daily water def-
icits require stored water and lead to diurnal and 
seasonal girth changes of the trunks (GUy 1970; 
Fenner 1980; Chapotin et al. 2006a, 2006c). The 
longevity of the African baobabs has long been 
doubted by some authors, but radiocarbon dat-
ing reveal the ages of baobabs from different sites 
reaching 1000 years up to 2000 years (swart 1963; 
patrUt et al. 2007; patrUt et al. 2013; riedel et 
al. 2014); that makes them the longest living an-
giosperms. Although Adansonia spp. are decidu-
ous species, shedding their leaves at the end of the 
rainy season, their usability for dendrochronologi-
cal and palaeoclimatic studies is questioned. A se-
cure identification of annual growth rings is often 

complicated by its complex wood anatomy. Owing 
to harsh environmental conditions, missing and 
false rings make dendrochronological crossdating 
difficult. By analysing their radiocarbon content 
roBertson et al. (2006) identified baobab wood 
growth rings as being annual. They suggested that 
high-resolution information about past climates 
may be obtained by analysing the carbon isotope 
values from the wood samples. Indeed, a first suc-
cessful rainfall reconstruction for northeastern 
South Africa, based on carbon isotope analysis of 
baobab trees, has only recently proven centennial 
and decadal scale variability over the last 1000 
years (woodBorne et al. 2015). 

In this study we introduce a well elaborated 
guideline for sample preparation and visual iden-
tification of growth rings for dendrochronologi-
cal and stable isotope investigations on baobabs. 
The question of the annual nature of baobab tree 
rings will be evaluated for a site in the Kalahari 
(Botswana) and discussed with respect to the main 
climatological and environmental drivers of bao-
bab wood growth, 13C discrimination, and intrin-
sic water-use efficiency. 

2 Material and methods

2.1 Study site and sampling

The study was carried out on Kubu Island 
(20°53’ S, 25°49’ E), a granite pluton located in 
the Kalahari, Botswana (Fig. 1b). Kubu Island is 
situated at the edge of Sua Pan that forms togeth-
er with Ntwetwe Pan the basin of the palaeolake 
Makgadikgadi (Cooke 1979). Kubu Island has an 

Fig. 1: Context of  the study site. (a) Geographical distribution of  Adansonia spp. over Africa (Wickens 1979). (b) Location of  the 
study site, Kubu Island, Botswana (for details see Riedel et al. 2012). (c) Climate diagram, following WalteR and lieth (1960), 
for the area around Kubu Island. Daily maximum average temperature of  the hottest month and daily minimum average 
temperature of  the coldest month are given in black at the left margin of  the diagram (data source: climexp.knmi.nl, CRU TS3.22).
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area of about 1.7 km² and reaches elevations of 
904–926 m a.s.l. (riedel et al. 2012). The climate 
is characterised by highly variable precipitation 
with an annual mean of 429 mm (203–776 mm), 
falling mainly from October to April (Fig. 1c). 
The evaporation rate exceeds 8 to 10 times the 
precipitation amount (hitChCoCk and nanGati 
2000). A low level of paedogenesis on Kubu 
Island leads to a vegetation dominated by grasses 
and shrubs. Besides some smaller tree and shrub 
species, the landscape is characterised by more 
than 100 baobabs (Fig. 2, Tab. 1), presumably 
A. digitata, although we cannot tell the species 
with certainty. Due to their shallow root system 
(Fenner 1980), baobabs on Kubu Island do not 
have access to groundwater and rely completely 
on precipitation events. The sampling strategy in-
cluded apparently healthy individuals of all age 
classes (circumferences ranging from 1.1 to 9.7 m) 
and mostly without visible mechanical injuries. 
None of the trees showed characteristic damages 
caused by elephants. A total of 16 individual bao-
bab trees were sampled in June 2011 and 20 in-
crement cores of 5 mm in diameter and 80 cm in 
length were obtained, i.e. some of the trees were 
sampled twice, orientated perpendicular, to check 
for possible differences in radial growth. All core 
samples were put into airtight tubes and kept in a 
freezer as soon as possible to prevent drying and 
mould formation.

2.2 Meteorological data 

The nearest meteorological stations Letlhakane, 
Orapa and Nata are located 63 km, 69 km south-
west and 85 km northeast from Kubu Island, re-
spectively. Their meteorological records are rather 
short, reaching back to 1983 (Letlhakane), 1968 
(Orapa) or 1959 (Nata). To obtain a robust regional 
climate signal for the area around Kubu Island, a 
larger grid area (19–23°S, 24–28°E) is required. 
The KNMI Climate Explorer (www.climexp.knmi.
nl) offers inter alia free global interpolated grid data 
sets from various providers for climate quantities 
such as temperature, precipitation, cloud cover etc. 
with a resolution of up to 0.5° latitude and longitude 
(see troUet and van oldenBorGh 2013 for guid-
ance). In this study, data provided by the Climate 
Research Unit of the University of East Anglia 
(CRU TS3.10.01, TS3.22) was used for correlations 
between tree-ring widths and climate data. The 
modelled precipitation data and the instrumental 

records were compared for statistical similarity and 
found with good correlation (CRU vs. Letlhakane: 
r = 0.74, p < 0.0001; CRU vs. Orapa: r = 0.83, p < 
0.0001; CRU vs. Nata: r= 0.85, p < 0.0001).

2.3 Ring-width measurements

The wood core samples were remoistened with 
purified water to prevent drying related shrink-
ing of the material. To study the wood anatomical 
details, the samples were cut perpendicular to the 
vessel diameters, i.e. perpendicular to longitudinal 
stem growth. The wood increment cores taken and 
preserved were too soft for clamping and cutting 
with a microtome and were thus cut by hand with a 
razor blade. Different light sources (reflected light, 
transmitted light, UV light: 365 nm) were tested to 
maximise the amount of visible information ob-
tained from the cores. Photographs of the cores 
were taken under UV light (microscope: Nikon 
SMZ800, camera head: Nikon DIGITAL SIGHT 

Fig. 2: Baobab tree sampled on Kubu Island (Bao17), ap-
proximately 15 m high

http://www.climexp.knmi.nl
http://www.climexp.knmi.nl
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DS-Vi1, TV Lens 0.55x DS, control unit: DS-U2, 
program: Nikon NIS-Elements, version 3.22.00 
© 1991–2010 Laboratory Image, 1600 x 1200 pix-
els) and merged accurately (Adobe Photoshop 
CS2, version 9.0.2 © 1990–2005 Adobe Systems 
Incorporated) for tree-ring width measurements. 
Some twisted cores had to be rotated during pho-
tography in order to maintain the transversal view. 
In these cases, care was taken whilst photograph 
merging to ensure the exact distances between the 
tree-ring boundaries. A subset of 4 cores was dried 
for a comparative study of the effects of shrink-
age on tree-ring width sequences. Air dried sam-
ples were glued on conventional wooden sample 
holders with the transverse core surface facing 
up. After preparing the surface with a microtome, 
the core samples were cleaned from loose mate-
rial via compressed air and then scanned. A spe-
cial image analysis system (WinDENDROTM © 
1989–2009 Regent Instruments Canada Inc.) was 
used, enabling precise and efficient measurement 
of tree-ring widths and related parameters from 
high quality digital images. Compared to the con-
ventional surveyor table systems, image based 
measurements allow an easy review and correc-
tion of individual rings, which is especially useful 
for little studied and complex tree species such as 
baobabs. 

2.4 Crossdating and chronology building

The austral growing season spans two calen-
dar years. For dating purposes, each tree ring was 
assigned to the year in which the growth started 
(following sChUlman 1956). The resulting tree-
ring width time series were synchronized with 
TSAPWin (Time Series Analysis and Presentation 
for Dendrochronology and Related Applications; 
version 4.67c © 2002–2011 Rinntech). The pro-
gram allows visual and statistical crossdating by 
matching patterns of thin and wide rings (Fritts 
1976) and illustrates discrepancies between the se-
ries. Areas of uncertain dating were reviewed in 
WinDENDROTM and corrected if necessary. The 
program Cofecha (Version 6.06P © 1997–2004 
Absoft Corporation) was used to detect possible 
measurement errors and to verify the crossdat-
ing. Owing to difficulties during the crossdating 
process each tree-ring width time series was plot-
ted against the annual precipitation amount as a 
function of time. By comparing ring-width and 
precipitation data, annual growth patterns could 
be recognized. Ring-growth and precipitation 
curves were synchronised by adding missing rings 
or deleting false rings. As few changes as possible 
were applied following the principle of parsimony 
(Fig. 3a, b). 

Tab. 1: Location, size and phenological state of  the sampled baobab trees.

Sample Coordinates (°S / °E) Altitude (m a.s.l) Tree height (m) * Girth (m) Leaves Fruits

Bao1, 2 20.893060 / 25.827032 915 12.5 6.0 - +

Bao3 20.889768 / 25.830724 904 6.0 6.0 + -

Bao4, 5 20.889518 / 25.829827 912 9.5 7.4 - -

Bao6, 7 20.889518 / 25.829828 913 9.5 9.7 + -

Bao8, 9 20.889378 / 25.828025 902 8.0 6.0 + -

Bao10 20.892997 / 25.823362 910 11.0 2.7 - -

Bao11 20.892997 / 25.823362 911 7.5 1.3 - -

Bao14 20.892997 / 25.823362 910 13.0 4.0 - -

Bao15 20.892997 / 25.823362 910 9.5 7.0 - -

Bao17 20.892997 / 25.823362 910 15.0 7.0 - ++

Bao19 20.893426 / 25.823139 909 10.0 6.8 - -

Bao20 20.894409 / 25.826583 914 6.0 2.5 + +

Bao21 20.894409 / 25.826583 914 7.0 5.5 - -

Bao22 20.894080 / 25.826888 907 4.5 1.1 - -

Bao23 20.894080 / 25.826888 907 6.0 2.3 - -

Bao24 20.894080 / 25.826888 907 9.5 6.5 - -

height ± 0.5 m, girth ± 0.1 m, without leaves/fruits (-), a few leaves/up to 10 fruits (+), many leaves/more than 10 fruits (++), 
*determined from photograph
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The program ARSTAN (AutoRegressive STAN-
dardization; MRWE Application Framework © 1997–
2004 Absoft Corporation) was used to produce a bao-
bab tree-ring width (TRW) chronology from the in-
dividual time series. Measured series were detrended 
and indexed before a robust estimation of the mean 
value function was applied to remove effects of endog-
enous stand disturbances (Cook and holmes 1986). 
Adaptive power transformation (Cook and peters 
1997) was chosen to stabilise the variance of the ring-
width series. Age related growth trends, caused by fast 
juvenile and slow adult growth, were eliminated with 
Hugershoff growth curve, i.e. a combination between 
polynomial and exponential functions. They optimal-
ly compensate the values of the tree-ring widths pro-
duced at different age stages (sChweinGrUBer 1983).

2.5 Stable isotope analyses

To verify the sample dating and to gain more 
information about the species’ climate response, 
stable carbon (δ13C) and oxygen (δ18O) isotope val-
ues were analysed for the 20 outermost rings of 16 
and 4 baobab trees, respectively. Tree rings were cut 
with a scalpel, by separating the diffuse porous wood 
(X) from the terminal parenchyma band (TB; i.e. 
two samples per year). Tree rings that include false 
rings were split for checking purposes. The samples 
were dried overnight in a vacuum drying chamber 
at 40 °C. Cellulose was extracted after wieloCh et 
al. (2011) and homogenized by ultrasonic treatment 
(laUmer et al. 2009). After drying in a vacuum freeze 
dryer for at least 48 h, 180–220 μg (170–200 μg) cel-

Fig. 3: Comparison between (a) measured and (b) corrected tree-ring width time series plotted against the annual 
precipitation amount adjusted for the austral growing season (CRU TS3.10.01). Following the principle of  parsi-
mony, the least possible changes were applied (here: 6) to synchronize the TRW measurement with the annual pre-
cipitation amount. Thus, it was abstained from fitting all major peaks together (see: 1972/1973) since one correction 
would have caused two additional changes. Omitting the corresponding TRW value for 1970 in (a) and 1972 in (b) 
the rank order correlation was improved from rhoa = 0.10, pa = 0.43 to rhob = 0.46, pb < 0.001.
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lulose samples as well as reference material were 
packed in tin (silver) capsules for δ13C (δ18O) analy-
sis. Measurements of stable carbon isotopes were 
carried out by combustion (1080 °C), using an ele-
mental analyser (Model NA 1500; Carlo Erba, Milan, 
Italy) coupled online via an open split to an Isoprime 
IRMS (Isoprime Ltd, Cheadle Hulme, UK). Samples 
for δ18O analysis were stored in a dry chamber before 
measurements were performed by high temperature 
TC/EA pyrolysis (1400 °C) coupled online via a 
Conflo IV to an IRMS Delta V Advantage (Thermo 
Fisher Scientific, Bremen, Germany). Helium 5.0 
was used as carrier gas for all analyses. The repro-
ducibility of sample (reference) material measure-
ments was better than ± 0.1 ‰ (± 0.1 ‰) for δ13C 
and ± 0.2 ‰ (± 0.3 ‰) for δ18O, respectively. The 
isotope ratios are given in delta (δ) notation, relative 
to VPDB (for δ13C) or VSMOW (for δ18O) as standard 
material (CraiG 1957). 

2.6 Correlation with climate quantities

Data of the isotopic composition of precipitation 
in and around southern Africa provided by the IAEA 
(International Atomic Energy Agency) was used for 
comparison with the obtained mean δ18O time series 
of X, TB and Mix (=(X+TB)/2). The carbon isotope 
discrimination (Δ13C) that occurs during photosyn-
thetic CO2 uptake of C3 plants was calculated after 
saUrer et al. (2004) by removing the atmospheric 
trend from the measured δ13C values. Hence, the 
discrimination values reflect the plant response to 
weather conditions and changes in atmospheric CO2 
concentration.

All chronologies (TRW, Δ13CX, TB, Mix, δ18OX, TB, 

Mix) were correlated with monthly data of precipita-
tion, cloud cover, temperature, and vapour pressure 
(CRU TS3.22), surface solar radiation (SSI; FRESCO 
v06), and Palmer Drought Severity Index (PDSI; 
PDSI.3.21.Penman.Snow.nl) for the grid field 19–
23° S/24–28° E, as well as relative humidity anoma-
lies (HADCRUH) for the grid field 20–25° S/25–
30° E. The correlations cover a 24-month period 
and also include quarterly and annually resolved val-
ues for the austral growing season (i.e. July–June). It 
might seem questionable to correlate a precipitation 
based tree-ring width chronology with precipitation 
again, but in doing so information about the influ-
ence of individual months on wood growth can be 
obtained. The correlation values gained provide es-
timates about positive or negative effects of seasonal 
weather conditions on tree growth.

2.7 Calculation of  intrinsic water-use efficiency 
(iWUE)

In plants, carbon uptake from the atmosphere 
and water loss are inherently linked, as both are 
controlled by stomatal movements (FarqUhar and 
sharkey 1982). The ratio of net photosynthesis (A) 
to conductance for water vapour (gH2O) on leaf-level 
is defined as intrinsic water-use efficiency (iWUE) 
that can be calculated from 13C discrimination and 
atmospheric CO2 concentration (pCO2; for further 
information see e.g. FarqUhar et al. 1982; seiBt et al. 
2008). To examine potential changes in iWUE over 
time, changes in the ratio of leaf internal CO2 (ci) and 
atmospheric CO2 (ca) partial pressure of each tree 
(dci/dca) were used to define the plant response to 
recent pCO2 increase as passive (dci/dca = 1), active 
(dci/dca = ci/ca), or very active (dci/dca = 0) according 
to wanG and FenG (2012). 

3 Results

3.1 Comparative methodology for visual analysis 
of  baobab wood anatomy

The preserved core samples showed alternat-
ing lighter and darker areas visible to the naked 
eye (Fig. 4a). Observation through a reflected light 
microscope exposed the lighter areas as diffuse 
porous wood (X) ranged by darker concentric pa-
renchyma bands (TBs). Some samples showed con-
siderable proportions of bark (up to 15 cm). Using 
reflected light, not all tree-ring boundaries could be 
identified with certainty, especially after remoisten-
ing the cores with purified water to prevent drying 
and irregular shrinking. Transmitted light yielded 
better results, but involved a greater sample mate-
rial loss, due to the preparation of thin cross sec-
tions. UV light was found to be the best to identify 
baobab wood anatomical features (Fig. 4b–f). Fibres 
and parenchyma appeared in clearly distinguishable 
fluorescence colours. Due to their lignification, fibre 
cells and vessels appeared blue, whereas parenchyma 
cells showed colours from turquoise blue to violet 
pink. Thus, even very thin parenchyma bands could 
be detected and parenchyma enriched areas dif-
ferentiated from true terminal parenchyma bands. 
Moreover, some parenchyma cells located next to 
fibres were found lignified. The width of terminal 
parenchyma bands varied greatly and seemed to be 
independent from the proportion of the preceding 
diffuse porous wood.
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Comparative measurements on moist and dried 
cores in WinDENDROTM revealed similar but not 
identical results in number and width of tree-rings 
(Fig. 5). Parenchyma tissue shrinks much more than 
fibres and vessels, so that tree-rings with high paren-
chyma content shrank stronger than those with less 
parenchyma tissue. After drying, several very thin 
terminal parenchyma bands were no longer detect-
able. Furthermore, parenchyma rich areas were mis-

interpreted as TBs after drying. Where drying related 
split-offs were not associated with a thick TB, it was 
hard to interpret the wood anatomy next to the splits. 

3.2 Special features of  terminal parenchyma 
bands (TBs)

The comparison of two samples from the same 
tree revealed varying thicknesses of TBs for differ-
ent radii of the stem. For some core samples the 
TBs close to the bark were only a few cells wide and 
difficult to distinguish from other radially orien-
tated parenchymal bands that occasionally occured 
throughout the wood. Few TBs were shifted along 
woody rays (Fig. 6a), as commonly known for ring 
porous oak species. TBs can contain single vessels 
(Fig. 6b) or a row of vessels, i.e. a thin diffuse po-
rous xylem section between two TBs (Fig. 6c–d). 
The alternation between diffuse porous xylem and 
parenchyma may not only reflect an annual growth 
rhythm, but may be also interpreted as short-term 
changes of growth conditions; presumably at the be-
ginning or the end of a vegetation period. Other TBs 
were transversely interrupted by vessels and fibres, 
with a deviation of the enclosed woody rays from 
the outer rays (Fig. 6e–f). Individual triangle shaped 
transitions from woody rays to TBs occurred in 5 out 
of 20 samples (Fig. 6g). Some wedging rings could be 
identified (Fig. 6h). Consequently, missing rings have 
also to be considered. A few TBs tapered greatly and 
apparently vanished (Fig. 6i). A square shaped radial 
vascular bundle within a TB was detected only in 1 
out of 20 samples (Fig. 6j). However, open vascular 
bundles were very common in all kind of parenchy-
mal tissue, independent of its age. These usually col-
lateral, seldomly bicollateral vascular bundles were 
orientated in a radial, tangential or horizontal axis 
(Fig. 6k–l). Phloem and xylem tissue occurred at ei-
ther side of a fascicular cambium. Vascular bundles 
in TBs often showed dark lines extending the fas-
cicular cambium at both sides. These thin cell rows 
may connect neighboured vascular bundles along a 
TB. Whilst drying and shrinking, core samples com-
monly split off along these cell lines. 

3.3 Population’s homogeneity 

Analyses of long-term trends allowed for con-
clusions on the development of tree-ring proxies 
over time, without requiring secured ring counting 
and absolutely correct dendrochronological dat-

Fig. 4: Surface cut baobab core sample. (a) Overview image 
of  a 5 mm thick baobab core sample with bark on top. Al-
ternating lighter and darker areas indicate tree rings. Black-
ish discolouration is caused by partial mould formation. 
(b-e) Comparison of  problematic areas using reflected and 
UV light (image height about 5 mm). (b) Uncertain wood 
anatomy between two terminal parenchyma bands (TB) can 
be recognized as parenchyma enriched area without vessels 
(c). (d) Confusing, parenchyma dominated area appears as 
a diagonally running terminal parenchyma band (e). (f) Im-
age of  a baobab tree ring under UV light.
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Fig. 6: Special features of  terminal parenchyma bands (TBs; framed by black dotted lines) under UV light (white scale equals 
1 mm). (a) TB got shifted along a woody ray. (b-d) Vessels enclosed in TBs: (b) Solitary enclosed vessel. (c-f) TBs split by vessels 
and fibres: (c-d) Single row of  vessels and fibres splits TB. (e-f) Transversely by vessels and fibres interrupted TB shows enclosed 
woody rays deviating from outer rays. (g) Triangle shaped transition from woody ray to TB. (h) Merging ring. (i) Greatly tapering 
TBs seem to vanish. (j) Square shaped radial vascular bundle. (k-l) Collateral vascular bundles within TBs: (k) Two opposing col-
lateral vascular bundles with xylem (X), phloem (Ph), fascicular cambium (white lines), and dark cell rows extending the fascicular 
cambium to either side of  the bundle. (l) Two collateral vascular bundles either radially (left) or horizontally (right) orientated.
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ing. Due to wood anatomical characteristics, the 
2009/2010 tree-ring boundary could not be identi-
fied with certainty in 7 out of 16 trees; thus, the 
2010 tree ring was defined as missing for those 
samples. To ensure comparability among the stud-
ies, all further statements refer to the period 1991 
to 2009. 

The mean annual growth of baobabs on Kubu 
Island amounted to 6.02 mm (minimum 2.42 mm 
for Bao9, maximum 11.55 mm for Bao20; table 
2) with a mean variance of 10.76 mm. The vari-
ance increased significantly with rising growth 
rates (r = 0.86, p < 0.001; Fig. 7a). The individual 
growth over time showed no common trend with 
9 trees slightly increasing (Bao20 significantly with 
p < 0.05) and 7 trees slightly decreasing in their 
growth per annum. No significant relationship 
could be found between stem circumference and 
growth trends. 

The grand mean δ13C (δ18O) values of -26.24 
± 0.91 ‰ VPDB (29.81 ± 1.19 ‰ VSMOW) were 
found with higher individual tree mean δ13C (δ18O) 
values showing significantly lower (higher) vari-
ances (rδ13C = 0.54, p < 0.05; Fig. 7b; rδ18O = 0.98, p < 
0.05; Fig. 7c; Tab. 2). Regarding the 13C discrimina-
tion, significant negative trends (5 trees) dominated 
significant positive trends (2 trees) over time ( p < 
0.05). No significant relationship could be found 
between the values for discrimination, growth 
rates or δ18O, respectively. Concerning changes in 
iWUE, 10 trees responded actively or very active-
ly to the elevated atmospheric CO2 content, 5 of 
them significantly ( p < 0.05–0.0001), with 0 < dci/
dca < ci/ca. Four baobab trees responded less ac-
tively, 3 of them significantly ( p < 0.01–0.0001), 
with ci/ca < dci/dca < 1, and the remaining 2 trees 
responded passively ( p < 0.001–0.0001) with dci/
dca ≥ 1. Therefore, iWUE increased in 14 out of 16 
baobab trees in a range of 2.2–30.7 %.

3.4 Verification of  the preliminary chronology 
and population’s climate response

Of the 1197 tree rings that were measured on 
20 core samples, 101 corrections have been applied 
(74 false rings, 27 missing rings), which results in 
an error rate of 8.4 %. Missing rings include also 
the counts for 2010 and were omitted from the 
analysis. The preliminary TRW chronology for the 
16 baobab trees covering the period 1960–2009 is 
given in Fig. 8a, b. The stable isotope data failed 
to prove the sample dating, because the obtained 
Δ13C and δ18O time series could not be crossdated 
among different trees (Fig. 9). The splitting of sug-
gested multiple rings into tree rings could not in-
crease the correlation coefficient.

TRW correlated significantly with the rainfall 
amount of the peak wet season, January–March 
( JFM), especially with February ( JFM: r = 0.67, 
p < 0.001; Feb: r = 0.66, p < 0.001) and signifi-
cantly with previous September (sep: r = 0.29, 
p < 0.05; Fig. 10a). A very similar pattern was ob-
served for cloud cover ( JFM: r = 0.58, p < 0.001; 
Feb: r = 0.66, p < 0.001; sep: r = 0.38, p < 0.01; not 
shown). During the peak wet season the chronol-
ogy showed a significant negative correlation with 
temperature ( JFM: r = -0.40, p < 0.01; February: r 
= -0.44, p < 0.01; Fig. 10b). No significant correla-
tions were observed between tree-ring width and 
vapour pressure, relative humidity anomalies or SSI 
(not shown). Significant positive correlations were 
achieved between TRW and PDSI from January to 
September with highest values in February (0.37 ≤ 
r ≤ 0.54; p < 0.01; not shown).

Although Δ13C and δ18O could not be cross-
dated among different trees, mean values were 
correlated with climate data, in case an underlying 
climate signal is superimposed by individually con-
trolled reactions to e.g. site conditions.
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Most of the mean Δ13C and δ18O time series 
correlated significantly with the pre-selected cli-
mate parameters ( p < 0.05) and correlations were 
scattered throughout the year. Δ13CX correlated 
overall negatively with relative humidity anomalies 
(Fig. 10c), whereby significant values were reached 
for the previous quarters July–September (jas: 
r = -0.59, p < 0.05) and October–December (ond: 
r = -0.68, p < 0.05) with highest values for July (jul: 
r = -0.62, p < 0.05) and December (dec: r = -0.79, 
p < 0.01), respectively. Further significant corre-
lations were found for September/October (Sep: 
r = -0.58, p < 0.05; Oct: r = -0.64, p < 0.05), and 
the annual mean (r = -0.59, p < 0.05). 

Correlations with PDSI were negative and 
generally highly significant for Δ13CMix and nega-
tive and generally significant for Δ13CX throughout 
the year, except for January/February or previous 
November to February, respectively.

From the available GNIP station data sets 
Harare and Pretoria showed highest correlations 
with the monthly precipitation amount (rHarare 
= -0.93, p < 0.0001; rPretoria = -0.82, p < 0.0001) 
as well as temperature around Kubu Island (rHa-

rare = -0.63, p < 0.05; rPretoria = -0.76, p < 0.01). 
Unfortunately, the data coverage for both sta-
tions is very scarce during 1991–2009. There 

were only 2 years available for Harare (1999, 
2001) and 5 years for Pretoria (1996–2000) with 
at least 7 months of data to be averaged. No sig-
nificant correlation was found for δ18OX, δ

18OTB 
or δ18OMix with δ18OPretoria. Nevertheless, δ18OX 
and δ18OMix were positively correlated with the 
rainfall amount of the previous quarter October–
December (ond: rX = 0.55, p < 0.05; rMix = 0.52, 
p < 0.05; Fig. 10d) with δ18OMix being correlated 
with previous November as well (n: rMix = 0.51, 
p < 0.05) and δ18OX showing negatively corre-
lations with the rainfall amount of the follow-
ing November (Nov: r = -0.47, p < 0.05). The 
shift from slightly positive to slightly negative 
correlations of δ18OX and δ18OMix with precipita-
tion amount is in line with the annual course of 
δ18OHarare. The same shift is visible for correla-
tions with temperature, although far from being 
significant (not shown).

4 Discussion

Working on baobab trees involves practical 
challenges in sample preservation, preparation, 
data collection, and data assessment. Airtight pack-
ing, cool storage and quickest possible freezing of 

Tab. 2: Mean, minimum, maximum and variance values of  TRW, δ13C, and δ18O for the period 1991–2009

Tree
annual growth (mm) δ13C (‰ VPDB) δ18O (‰ VSMOW)

mean min max variance mean min max variance mean min max variance

Bao1 6.50 3.30 11.77 3.57 -26.80 -28.53 -25.14 0.83  

Bao3 6.47 1.49 15.58 11.16 -25.91 -29.19 -24.70 0.78  

Bao4 5.86 1.94 10.58 5.33 -25.97 -26.94 -24.86 0.27  

Bao6 6.59 1.39 13.44 8.56 -25.77 -27.01 -24.60 0.49 29.18 27.87 30.92 0.47

Bao9 2.42 0.85 5.01 1.28 -25.72 -27.59 -23.98 0.98  

Bao10 6.57 2.11 15.55 11.63 -25.86 -27.75 -23.56 0.71 30.04 26.34 32.08 2.17

Bao11 4.86 1.11 10.82 4.31 -27.05 -28.61 -24.83 0.91 30.33 27.58 35.27 2.26

Bao14 6.33 1.26 16.89 16.06 -25.42 -26.95 -23.46 0.83  

Bao15 6.51 2.74 11.47 5.44 -27.10 -29.62 -25.16 1.51  

Bao17 3.46 1.37 7.31 2.17 -26.39 -28.62 -23.77 1.63  

Bao19 7.38 1.71 17.70 17.78 -27.20 -28.80 -25.36 1.22  

Bao20 11.55 3.12 37.52 54.48 -26.24 -28.09 -24.66 1.08  

Bao21 4.64 1.36 7.65 2.85 -26.33 -27.61 -24.64 0.68  

Bao22 4.52 1.89 9.16 4.73 -25.90 -26.95 -24.51 0.35 29.65 27.36 31.77 1.04

Bao23 7.54 3.46 14.19 11.43 -26.18 -27.92 -24.94 0.49  

Bao24 5.07 1.61 15.69 11.44 -25.98 -27.24 -24.97 0.55     
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Fig. 8: Preliminary baobab chronology. (a) Visual crossdating of  16 core samples with resulting TRW indices chronology 
(red). Missing rings were treated as gaps in the series. (b) Comparison of  the TRW indices chronology with annual precipi-
tation data corrected for the austral growing season (CRU TS3.10.01).
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the samples could not completely prevent mould 
formation. Fungus development was most com-
monly indicated by very few, small scattered areas 
of surface discolouration or even fewer discoloura-
tion throughout the core, without any effect on the 
wood texture. Comparative measurements have 
shown that air drying of baobab wood samples 
leads to major information losses: very thin paren-
chyma bands could become undetectable, paren-
chyma rich areas were likely to be misinterpreted 
as terminal parenchyma bands, and the relation be-
tween individual tree-ring widths was altered due 
to the drying related material shrinking. More gen-
tle drying processes like drying over several weeks 
(roBertson et al. 2006) or freeze-drying may offer 
alternatives for working with moist core samples 
and may be tested further in future studies.

UV light induced fluorescence was found to be 
best suited for the identification of baobabs’ wood 
anatomical details. Nevertheless, their interpreta-
tion remains challenging in many cases. The char-
acteristic features of terminal parenchyma bands 
cover a wide range (Fig. 6). The identification of 
tree-ring boundaries was complicated by dispro-
portionately thin parenchyma bands, as well as 
multiple, wedging, greatly tapering and apparently 
vanishing rings. The occurrence of vessels in ter-
minal parenchyma bands was not unusual. Adjacent 
bands separated only by a row of vessels could ei-
ther describe a short intra-seasonal rainfall event 
during the dry season, or the termination of two 
individual vegetation periods. A noticeable number 
of vascular bundles appeared in all kinds of paren-
chymal tissue. One sample showed a square shaped 
radial vascular bundle within a terminal paren-
chyma band, which is rather typical for roots than 
for trunks (denFFer 1983). Most of the vascular 
bundles, however, are open collateral bundles with-
out a specific orientation. Since they were always 
embedded in parenchymal tissue, they may have 
caused the observed triangle shaped transitions 
from woody rays to terminal parenchyma bands. 
Intraxylary vascular bundles in baobabs have been 
described earlier by Fisher (1981) and rajpUt 
(2004) and were associated with the regeneration 
of damaged tissues. Caused by external injuries or 
probably age-related internal damages, adjacent 
parenchyma cells start to proliferate (Fisher 1981) 
and can form meristematic centres, which differ-
entiate on repeated divisions into vascular bundles 
(rajpUt 2004). Because rajpUt (2004) found these 
structures solely in xylem produced 12–15 years 
ago, he assumed it to be an age-related phenom-

enon. However, core samples from Kubu Island 
showed vascular bundles age-independently in all 
kind of parenchymal tissue, which contradicts the 
hypothesis of an age-related phenomenon.

Following the Hagen-Poiseuille equation, the 
capillary fluid flow rate for a given pressure gradi-
ent depends on the fourth power of vessel radius. 
Furthermore, longer vessels show a larger conduc-
tivity due to a decreased passage of fluids from cell 
to cell (roth-neBelsiCk 2006). That results in a 
decreased transport resistance within a vascular 
strand. The frequent occurrence of vascular bun-
dles throughout the wood of baobab trees is thus 
likely another adaption to the semi-arid environ-
ment, enabling greater water storage and a more ef-
fective nutrient transport. 

Apart from the challenging wood anatomy, site 
and age differences were likely responsible for the 
encountered difficulties in crossdating the tree-
ring width series. To sample all available age classes 
turned out to be problematic, since baobabs of sev-
eral age classes show different growth rates (swart 
1963; GUy 1970; GUy 1982; BreitenBaCh 1985) 
and react quite individually to poor, inconsistent 
or heavy rainfall. Two neighbouring baobab trees 
growing under the same site conditions were found 
to show strongly different growth trends over the 
last 19 years; most likely due to age differences ex-
pressed by circumference (Bao20: 2.5 m, Bao21: 
5.5 m). While the thicker tree grew constantly slow, 
the other one showed an exceptional growth in-
crease over time. All other observed growth trends 
seemed to be independent from the individual stem 
circumference and were thus very likely due to site 
differences. A tree located at a slightly inclined and 
weakly fissured granite rock showed constantly 
below average growth rates (Bao9), because the 
absence of soil resulted in a lack of nutrients and 
water. Beside these exceptions (Bao9, Bao20), all 
sampled trees showed similar mean values for an-
nual growth.

Mean δ13C values varied about 1.8 per mille be-
tween trees, which is relatively little compared to 3 
or up to 5 per mille stated for trees in other stud-
ies (loader et al. 2003; skomarkova et al. 2006; 
GeBrekirstos et al. 2011). An increase in mean δ13C 
values was accompanied by decreasing variances 
most likely due to plant-physiological processes. 
High δ13C values can be governed by very low sto-
matal conductance (i.e. drought stress) and/or a 
very high rate of photosynthesis (unlikely under 
drought stress). Both lead to a drop in the leaf inter-
nal CO2 concentration, whereby the photosynthetic 
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enzyme RubisCO discriminates less against 13C (e.g. 
sCheideGGer et al. 2000; mCCarroll and loader 
2004; treydte et al. 2004). As stress ceases, the 
ratio of photosynthetic rate and stomatal conduct-
ance can be increasingly influenced by factors as 
site and age differences, which cause higher δ13C 
variability. These influences might also be respon-
sible for the missing relationship between discrimi-
nation and growth rates.

The rising Co2 concentration of the atmos-
phere (ca) and the related decreasing δ13C value, pri-
marily due to the combustion of isotopically light 
fossil fuels over the last 200 years, are likely to trig-
ger plant physiological responses. wanG and FenG 
(2012) found the increase in ca accounting for 98 % 
of the observed changes in iWUE of 83 tree-ring 
δ13C series from northern hemisphere mid- to high-
latitudes. It seems thus by far being the most im-
portant variable in driving the iWUE changes over 
time. As ca increases, more or increasing amounts 
of Co2 will diffuse into the leaves. Because ci was 
found to increase linearly with ca, the increasing 
Co2 transfer into the leaves has been greater than 
the rate of Co2 fixation. Due to plant physiological 
adaptations ci increased less rapidly than ca so that 
dci/dca < 1, which causes iWUE to increase (wanG 
and FenG 2012). The majority of baobab trees re-
sponded actively to the elevated atmospheric Co2 
content. This could be either by increasing their 
photosynthetic rate and/or by decreasing stomatal 
conductance. Since water availability is the main 
limiting factor in arid regions, the latter seems to 
be more appropriate. The increasing trend in iWUE 
has already been shown for other tree species at dif-
ferent locations worldwide (dUqUesnay et al. 1998; 
saUrer et al. 2004; Brienen et al. 2010). However, 
it is interesting to note that an increase in iWUE 
does not necessarily lead to an overall reduction in 
transpiration as demonstrated in a recent study by 
Frank et al. (2015). In fact their models calculated 
a 5 % increase in European forest transpiration 
over the 20th century. Hence, other factors such as 
enhanced leaf-area index, prolonged growing sea-
son, and increased evaporative demand (Frank et 
al. 2015) seem to counteract theoretically mitigat-
ing effects of increased iWUE. 

Mean δ18O values varied about 1.1 per mille, 
which is in the lower range of other studies 
(norström et al. 2008; sano et al. 2012; sChollaen 
et al. 2014). In contrast to δ13C, increasing δ18O 
values were accompanied by increasing variances. 
Various exchange mechanisms between enriched 
water from the site of evaporation or subsequently 

built sugars and unenriched xylem water, transport-
ed via the transpiration stream, impede a straight-
forward interpretation of 18O enrichment found in 
tree-ring cellulose (Gessler et al. 2014). A high rate 
of transpiration (due to wet and/or relatively cool 
environmental conditions) leads to an enrichment 
of leaf water, since isotopically lighter water evapo-
rates faster. The so called Péclet effect causes the 
exponential nature of 18O enrichment that reaches 
a maximum, when the enriched water is hindered 
to diffuse backwards in the leaf lamina by the op-
posing transpiration stream (FarqUhar and lloyd 
1993; BarBoUr et al. 2001; FarqUhar and CernUsak 
2005; treydte et al. 2014). Thus, enriched, mixed 
and xylem water are available for photosynthesis, 
and might have caused the higher variability of 
higher δ18O values.

Low transpiration values, triggered by reduced 
stomatal conductance (due to dry and/or hot condi-
tions), cause less evaporative enrichment of the leaf 
water. Hence, the difference in δ18O of the leaf wa-
ter and the reduced transpiration stream is less pro-
nounced, which could explain the observed smaller 
variances for lower δ18O values.

Baobab trees with higher mean δ13C values 
showed smaller variances, probably because a high-
er stress level reduces the influence of individual 
differences in site and age conditions. At the same 
time baobabs with lower mean δ18O values showed 
smaller variances, likely due to high vapour pres-
sure differences between the atmosphere and the 
leaves, forcing the trees to behave more similar. 
The tree with the highest mean δ18O had the lowest 
mean δ13C. That very young tree (Bao11) was part 
of a group of baobabs and seemed to be the least 
stressed tree of our sample collection. There was 
no significant correlation between high δ18O values 
and low δ13C values and vice versa, which could be 
due to the small sample size (4). Very little is known 
about the ecophysiology of baobabs and the range 
of variability. Therefore, our observations may only 
be an expression of individual morphometric dif-
ferences between trees. Further studies are needed 
to clarify if the range of variation is meaningful in 
terms of stress versus non-stress situations or not.

Chronology building was based on the com-
parison of individual tree-ring width series and 
regional precipitation amount per annum. Since 
these two parameters were highly significantly 
correlated, missing and false rings could be identi-
fied. In consequence, the preliminary chronology 
needed to be confirmed by further analyses. Since 
the obtained Δ13C and δ18O time series could not 
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be crossdated among different trees, these analyses 
could not be used as a direct control of sample dat-
ing. However, the correlations and trends found be-
tween the stable isotope series and various climate 
parameters roughly met the model expectations for 
such an environment, suggesting common climate 
signals were superimposed by individual reactions 
to e.g. site conditions. Assuming that dendrochro-
nological dating was correct, our results indicate 
that higher sample replication may be required for 
establishing appropriate stable isotope site chro-
nologies. The fact that Δ13C was found to correlate 
overall negatively with relative humidity anoma-
lies and PDSI is in accordance with the Farquhar 
model, that low stomatal conductance leads to a 
decrease in ci and thus an increase in δ13C of plant 
material (FarqUhar et al. 1982). This could prove 
the reliability of the sample dating. Contrary to 
our results, roBertson et al. (2006) found a posi-
tive correlation between detrended carbon isotope 
values for wholewood of a baobab specimen from 
Skukuza (24°59’ S, 31°35’ E), South Africa, with 
January precipitation. However, since their results 
are based on a single baobab growing close to a 
cultivated garden, where watering takes place if 
needed, their outcomes should be treated with cau-
tion. The highly significant negative correlations 
of the GNIP δ18O data for Harare and Pretoria 
with precipitation amount and temperature is ex-
plained by the geographical site location. As situ-
ated in the summer rainfall zone both precipitation 
amount and temperature rise at the same time and 
the expected increase in δ18O with temperature is 
superimposed by the rainfall amount effect. This 
trend holds true for the relation of baobab δ18O 
to precipitation and temperature, expressed by the 
shift from positive to negative correlations during 
the growing season.

The significant correlations between tree-ring 
width indices and precipitation as well as cloud 
cover during the peak wet season ( JFM) illustrate 
the high water demand of baobabs on Kubu Island 
during that period, mostly pronounced in February. 
A more dense cloud cover increases the probability 
of rain and decreases solar radiation, which is usu-
ally accompanied with high temperatures. These 
findings were confirmed by the concurrent nega-
tive correlation with temperature, whereas vapour 
pressure did not seem to influence baobab growth 
rates. Usually, it takes 2–3 months for baobabs to 
return to pre-flushing water-content levels in the 
stem (Chapotin et al. 2006c). As baobabs on Kubu 
Island showed highest correlation with the fourth 

month of the wet season (February), they appar-
ently experienced a disproportionately high water 
loss during the dry season and thus needed more 
time for compensation. Nevertheless, the presented 
results should be treated with caution since possible 
dating errors in our preliminary chronology cannot 
be ruled out completely.

5 Conclusion

The African baobabs are promising yet chal-
lenging tree species for dendrochronological stud-
ies. While air tight packing and freeze storing 
ensures good sample preservation, and UV light 
induced fluorescence enables clear identification 
of wood anatomical details, interpreting the latter 
is still difficult. Site and age differences addition-
ally increased the problems so that conventional 
crossdating failed. High-resolution 14C analyses and 
subsequent 14C wiggle matching might be an addi-
tional methodology to be applied for proper dat-
ing of baobab wood samples. However, the strong 
relationship between TRW and annual precipitation 
amount allowed the identification of missing and 
false rings and thus the development of a prelimi-
nary baobab chronology from 1960–2009. Despite 
TRW, Δ13C and δ18O were found to correlate sig-
nificantly with climate data. Precipitation amount 
around Kubu Island showed highest correlations 
with the annual δ18O course of precipitation from 
Harare. Due to the current data gaps in southern 
African GNIP stations, no correlations with the 
baobab δ18O series could be applied. Hence, tree-
ring verification using annually resolved δ18O val-
ues of precipitation is not yet possible. Additional 
intra-annual stable isotope analyses might solve this 
problem, by allowing for correlations with the long-
term δ18O monthly mean values and should thus be 
applied in future studies. Other requirements for 
prospective dendrochronological studies on bao-
bab trees include more comparable site conditions 
and the exclusion of obvious juvenile baobab trees 
from the sampling. We suggest a higher sampling 
rate with two or more samples per tree with larg-
er core diameter (e.g. 12 mm) to overcome prob-
lems of apparently vanishing parenchyma bands. 
Although our results cannot unambiguously prove 
the correct sample dating, highly significant corre-
lations and trends in line with established models 
of isotope fractionation indicate that baobab trees 
indeed show potential to become a new high-reso-
lution climate archive for (semi-)arid Africa.
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