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Summary: Some of  the most obvious consequences of  anthropogenic climate change are observed changes in the dates of  
the occurrence of  phenological events. Most prominently, observations from the Northern Hemisphere’s extratropics indicate 
an earlier occurrence of  spring events. Recent climate models include land surface schemes that provide representation of  the 
vegetation. However, they are limited in simulating the plants’ response to climate change. In this study we present results of  a 
dynamical-statistical modeling approach for phenology in southeastern Germany, combining climate change simulations provid-
ed by a high resolution, state-of-the-art regional climate model (RCM) with three different types of  regression methods: ordinary 
least squares (OLS), least absolute deviation (LAD) and random forest (RFO). We focus on changes in the day of  the year (DOY) 
of  Forsythia suspensa flowering, the earliest phenophase of  the growing season in Bavaria. Based on roughly 2600 observations, 
collected at 94 phenological and 26 meteorological stations between 1952 and 2013, we compare the regressions via a bootstrap, 
using once 13 and once 4 meteorological variables as predictors. Altogether, we find the regressions with less variables to be more 
robust, while the regression estimates are nearly identical. Explained variance and RMSE (root mean square error) are 54.8 % and 
8.8 days for RFO and 51.2 % and 9.1 days for the other regressions. These trained and cross validated statistical models are used 
to estimate the effects of  future climate change on the DOY by applying them to the RCM simulations. For OLS or LAD, under a 
low (high) greenhouse gas emission scenario, we find a mean advance of  the DOY of  8 (15) days by the end of  the 21th century 
compared to the base period from 1961 to 1990. The spatial pattern of  the change resembles the topography, with the strongest 
trends in the DOY over mountainous regions as a consequence of  a simultaneous rise in temperatures and reduction in snow 
depth. RFO is restricted to the range of  the observations and hence the response to the simulated climate is damped, resulting in 
an advance of  DOY of  only 5 (8) days and a reduction in variance. There is no apparent spatial pattern identifiable. Altogether, 
we find OLS and LAD to be more suitable for dynamical-statistical modeling of  phenology than RFO.

Zusammenfassung: Zu den augenfälligsten Folgen des anthropogenen Klimawandels gehören beobachtete Veränderungen 
im zeitlichen Auftreten von phänologischen Ereignissen. Am markantesten deuten Beobachtungen aus den Außertropen der 
Nordhalbkugel auf  den früheren Eintritt von Frühlingsereignissen hin. Aktuelle Klimamodelle verfügen über Landoberflä-
chenschemata zur Abbildung der Vegetationsdynamik, allerdings sind sie nur eingeschränkt dazu in der Lage die Reaktion 
von Pflanzen auf  Klimaänderungen zu simulieren. In dieser Studie präsentieren wir Ergebnisse eines dynamisch-statistischen 
Modellierungsansatzes für Phänologie in Bayern. Dafür kombinieren wir hochaufgelöste Klimawandelsimulationen eines aktu-
ellen, regionalen Klimamodells (RCM) mit drei verschiedenen Regressionsmethoden: Gewöhnliche-Kleinste-Quadrate (OLS), 
Geringste-Absolute-Abweichung (LAD) und Random Forest (RFO). Wir untersuchen Änderungen im Eintrittsdatum der Blüte 
von Forsythia suspensa, der frühesten Phänophase der Vegetationsperiode in Bayern. Bei einer Datengrundlage von etwa 2600 
Beobachtungen, die an 94 phänologischen und 26 meteorologischen Stationen zwischen 1952 und 2013 erhoben wurden, nut-
zen wir Bootstraps um die Regressionen je mit 13 und 4 meteorologischen Variablen als Prädiktoren zu vergleichen. Insgesamt 
erweisen sich die Regressionen mit der geringeren Anzahl Variablen als robuster, während die Regressionsschätzer beinahe 
identisch sind. Für den RFO ergibt sich eine erklärte Varianz von 54.8 % und ein RMSE (die Wurzel des mittleren quadratischen 
Fehlers) von 8.8 Tagen, die anderen Regressionen erreichen 51.2 % bzw. 9.1 Tage. Mit diesen so trainierten und kreuzvalidierten 
statistischen Modellen schätzen wir die Effekte des künftigen Klimawandels auf  das Eintrittsdatum der Blüte indem wir sie 
auf  die RCM Daten übertragen. Für OLS und LAD finden wir für ein Szenario mit geringen (hohen) Treibhausgasemissionen 
eine mittlere Verfrühung des Blühdatums von etwa acht (15) Tagen bis zum Ende des 21.Jahrhunderts im Vergleich zur Refe-
renzperiode 1961 bis 1990. Im räumlichen Muster zeichnet sich die Topographie ab. Dabei zeigen sich die stärksten Trends in 
hochgelegenen Regionen, bedingt durch die gleichzeitige Erhöhung der Temperatur und Reduktion der Schneetiefe. Die Schät-
zungen von RFO sind auf  den Wertebereich der Beobachtungen beschränkt. Entsprechend fällt die Reaktion auf  die simulierte 
Klimaänderung mit einer Verfrühung von nur 5 (8) Tagen und einer Reduktion der Varianz gedämpft aus. Ein offensichtliches 
räumliches Muster ist nicht zu erkennen. Insgesamt erscheinen uns OLS und LAD für die statistisch-dynamische Modellierung 
von Phänologie als besser geeignet als RFO.
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1 Introduction

Phenology deals with recurrent biological events 
including the causes of their timing with regard to 
abiotic factors, amongst others (lietH 1974). For a 
specific plant at one specific location, without the 
occurrence of natural disaster or human interfer-
ence, the intraannual changes of climatic conditions 
are the main drivers of the plants’ annual cycle, the 
most obvious in regions characterized by pronounced 
thermic or hygrid seasons as well as a dynamic veg-
etation (see ScHwartZ 2013). Also, the year-to-year 
variations of the onset of certain phenological phases 
is in large parts caused by variations of the region-
al climate. In the last decades, one special focus of 
phenological studies has been the shift in the well 
documented phenological phases as a consequence of 
climate change.  In particular, there is overwhelm-
ing evidence from hundreds of species throughout 
the Northern Hemisphere for an earlier occurrence 
of spring events (see for example Field et al. 2014 
and the reviews of MenZel et al. 2006; cleland et al. 
2007; ricHardSon et al. 2013 and references therein). 
These individual responses might result in unforeseen 
ecological consequences (tHacKeray et al. 2016).

The most sophisticated tools for exploring the 
effects of climate change are three-dimensional 
circulation models (taylor et al. 2012). A special 
group of these are regional climate models (RCMs), 
which, due to their high spatial resolution, are es-
pecially useful for investigating the environmen-
tal impacts of climate change (giorgi et al. 2006). 
However, while these models combine numerous 
modules for incorporating physical and biological 
aspects of the climate system (Flato et al. 2013), 
current land surface schemes are not capable of 
modeling vegetation phenology satisfactorily, not 
to mention the response of individual phenological 
phases (ricHardSon et al. 2012).

Given these apparent deficiencies of climate 
models, to study the response of vegetation or spe-
cific plants to future climate change, empirical mod-
els are employed. A common way to do this is to use 
observational data to derive a statistical relationship 
between the target variable, e.g. the day of the year 
(DOY) of the occurrence of a phenological phase, 
and a set of observed meteorological variables as pre-
dictors (e. g. MenZel 2003; Ma and ZHou 2012). If 
the established relationship appears to be robust, it 
is possible to apply the empirical model to climate 
model simulations, e.g. to estimate the phenological 
response to projected climate change. This approach 
is usually called dynamical-statistical modeling 

(PaetH et al. 2008; awoyÉ et al. 2017). A number 
of empirical, often called process-based, phenology 
models of different complexity exists (e.g. Hänninen 
et al. 1994; ScHaber and badecK 2003; Setiyono et 
al. 2007; Morin et al. 2009) and some of these have 
been used in a dynamical-statistical approach, e.g. by 
Migliavacca et al. (2012) and Morin et al. 2009 for 
studies in North America. However, those models 
are typically designed for specific plants and phe-
nological phases and might even perform badly for 
validation data (see ricHardSon and o’KeeFe 2009 
for a discussion).   

Thus, given the large number of regions, plants 
and phases for which information about their re-
sponse to climate change signals might be crucial 
for adaption, purely statistical models (e.g. eStrella 
and MenZel 2006; PriMacK et al. 2009) should also 
be considered for exploring these questions. An ap-
propriate general statistical tool for this is regression 
analysis. Albeit commonly associated with linear, or-
dinary least squares (OLS), there are a number of dif-
ferent approaches available. Typically, these address 
some of the apparent weaknesses of OLS, such as a 
lack of robustness in the presence of extreme values 
or outliers. Furthermore, modern methods of sta-
tistical learning seem to perform better in terms of 
prediction, often by avoiding to constrain the predic-
tions by assuming a global, relatively simple math-
ematical function as OLS does (HaStie et al. 2008).

One aim of this paper is to demonstrate the 
usefulness and flexibility of the dynamical-statisti-
cal approach. We focus on changes in the DOY of 
Forsythia suspensa flowering for Bavaria, Germany, but 
the method could be transferred to other phenologi-
cal features without large adaptions, especially as we 
demonstrate how to make use of spatially heteroge-
neous data. In this study, we employ and compare 
three types of regression for dynamical-statistical 
modeling: the parametric OLS and least absolute 
deviation regression (LAD) and the Random Forest 
algorithm (RFO), which has gained a lot of attention 
since its introduction (breiMan 2001) and has been 
widely adopted by data scientists.

We further use a high-resolution, state-of-the art 
RCM to estimate the effects of climate change. As we 
use two different emission scenarios we are able to 
estimate the potential for mitigation.

The paper is organized as follows: in section two, 
we introduce our study area, present our data and 
briefly discuss the principles of the three regressions. 
We further present the measures of model quality 
we use for model comparison and the bootstrap for 
estimating their robustness and reliability. Also, the 
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pre-processing of the various datasets is explained. 
The next section contains the results of the study, 
which are discussed in section four before we draw 
our conclusions.

2 Material and methods

2.1 Study area

Bavaria is located in Central Europe and is, 
with an area of approximately 70500 km², the larg-
est federal state of the Federal Republic of Germany. 
The climate is notably moderate with a slight gra-
dient from more maritime conditions (Cfb climate 
in the Koeppen classification) in the north-western 
part to more continental climate (Dfb) in the east 
and south-east of the study area. Consequently, the 
prevalent natural vegetation type would be temper-
ate forest without the, in reality vastly dominating, 
effects of human interference. Nowadays around 
30 % of the area are covered with woods and for-
ests. However, local conditions might differ largely 
from these averages, especially due to elevation. The 
southernmost part of Bavaria is part of the Alps and 
hence characterized by an Alpine climate.  

2.2 Observational data

We focus on the DOY of Forsythia suspensa’s 
flowering. This phase is considered the beginning 
of early spring as defined by the German Weather 
Service (brunS et al. 2015). This phenophase is 
characterized by high variability, however, there 
are indications of an overall shift towards earlier 
dates for Germany (MenZel et al. 2001). Forsythia 
suspensa is considered a good proxy for the effect of 
climate variables like temperature. It is also part of 
the Global Phenological Monitoring network and 
the International Phenological Gardens of Europe 
Program (cHMielewSKi et al. 2013).

Observational data is provided by the German 
meteorological service and the Bavarian state office 
for the Environment. Phenological data collection is 
hereby carried out by a network of volunteers through-
out Germany, whilst meteorological data is measured 
by operational weather stations. As the German me-
teorological service provides guidelines (brunS et al. 
2015) for the volunteers, the quality of the data can be 
considered quite high. Altogether, we can use 2592 ob-
servations of the DOY from 94 phenological stations, 
covering a time period from 1952 to 2013 (Fig.  1). We 

are therefore optimistic that we cover the range of en-
vironmental and climatic conditions in Bavaria quite 
well and that our statistical models can be reliably 
tuned. We only use a small portion of the more than 
1000 phenological stations in Bavaria. This is due to 
the fact that we only consider stations for which there 
were at least 10 years of observations available, so as to 
get a realistic estimate of the average day of flowering 
per station. All DOYs are transformed into anomalies 
by subtracting this station mean.

The meteorological data consists of 13 variables, 
measured by 26 meteorological stations (Fig. 1) and 
provided in daily resolution. Please see the caption of 
Fig. 2 for a listing. Together, these variables allow for 
a rather complete assessment of each stations climate 
and represent all available climatic information pos-
sibly relevant for phenology. 

While data availability for our study area can be 
considered quite positive, the predictors’ preparation 
to obtain reliable results is not trivial. As the climatic 
information in general is gathered at different places 
than DOY, the pre-processing must ensure that it is 
representative for the phenological station. In addi-
tion, the optimal time span to consider during the year 
is a topic of discussion. Further, the statistical models 
must not be sensitive to location specific aspects that 
cannot be provided by climate models.

Altogether, we found our methods to produce 
the best results if the following is applied: For each 
phenological station we use climate data from the 
nearest meteorological station. We calculate for each 
variable accumulated anomalies over the 45 days be-
fore the station’s mean DOY. This is an effective way 
to reduce the impact of climatic differences between 
the stations due to topography as well as the influ-
ence of different types of soils or even anthropo-
genic long term effects such as buildings. We found 
45 days sufficient to ensure that the relationship be-
tween meteorological variables and DOY is not too 
strongly affected by the estimate of the mean DOY, 
while we can still make use of the available informa-
tion. This is less the case when monthly or seasonal 
means are used (e.g. MenZel 2003; cHMielewSKi 
et al. 2004; PriMacK et al. 2009). Thus, we account 
for the individual characteristics of a location while 
preventing a situation where the predictors really 
are functions of the dependent variable, e.g. when 
yearly measures are calculated in reference to the ac-
tual DOY. Note that anomalies are also much more 
practical when transferring the statistical models to 
climate model data, as this removes potential sys-
tematic differences between the climatology of the 
model and the observed meteorological data.
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To estimate the validity of this somewhat heu-
ristic procedure, we address two aspects that could 
potentially affect our results. The first is the distance 
between phenological and meteorological station and 
hence the validity of the climate data. According to the 
provided meta data the maximum (mean) Euclidean 
distance is about 20 (9.5) km. We are confident that 
this doesn’t endanger the expressiveness of the anom-
alies. However, the maximum difference in elevation 
is 1312 m and potentially harmful. The other issue 
is concerned with the robustness of the mean DOY. 
Considering that a maximum of 62 years of data is po-
tentially available per station, it seems unlikely that a 
full 10-year record was gathered during years all char-
acterized by strong climatic anomalies of the same sign 
(which could seriously affect the stations mean DOY). 
For mean temperature, Fig. 1 shows differences for 
each phenological station’s mean and the 1961–1990 
mean of the meteorological station during the con-

sidered 45 days. As none of these deviations exceeds 
half a standard deviation in either direction, they don’t 
seem problematic in terms of representativity. Still, 
this may be the case for a small number of stations, 
whose impact on the regressions, however, should be 
small given the overall sample size and the fact that 
the possible range of the DOY is limited. Nonetheless, 
a far-off estimate for the mean DOY might affect the 
statistical-dynamical models’ local performance.

We investigate the relevance of these effects on 
our results by redoing the analysis using three sub-
samples of our data. For that, we restrict our analysis 
to a) stations for which the difference in elevation to 
their next-neighbor meteorological station is less than 
100 m, b) stations with 30 or more years of record and 
c) the intersection of a) and b).  

Fig. 2 displays the correlations of the processed 
variables. We intend to reduce the number of pre-
dictors as, in part due to our pre-processing, there 

Fig. 1: Study area: elevation and locations of  the phenological and meteorological stations used in 
this study. Filling indicates the available years’ mean deviation in mean temperature from the long 
term mean of  the 45-day period considered. See the text for further explanations.
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are strong correlations between several of the pre-
dictor variables (Fig. 2). Furthermore, the adaptation 
of our procedure for other regions will be the easier 
the smaller the number of variables. As a subset, we 
choose mean temperature, mean wind speed, pre-
cipitation and snow depth, which represent different 
aspects of Bavaria’s climate. Note that these tend to 
have small correlations with each other but strong 
correlations with several of the other variables.

2.3 Climate model data

The climate change simulations are part of 
the internationally coordinated EURO-CORDEX 
project ( Jacob et al. 2014). We use daily data in a 
0.11° x 0.11° horizontal resolution from the state-of-
the-art RCM MPI-CSC-REMO2009 (addressed as 
REMO in the following) with boundary conditions 
provided by the global climate model MPI-ESM-
LR. We consider two transient simulations, dif-
fering in the emitted amount of greenhouse gases 
and, hence, their atmospheric concentration. The 
Representative Concentration Pathway 4.5 scenario 
(RCP 4.5) assumes a rather small increase, which re-
sults in an average rise of radiative forcing of 4.5 W/
m² by the end of the 21th century. The other con-
sidered scenario, RCP 8.5, is characterized by rather 

high emissions, which result in an anthropogenic 
radiative forcing of 8.5 W/m² (MoSS et al. 2008). 
By utilizing both we can estimate the potential of 
consequent mitigation measures for the reduction 
of climate change impacts. Note that during the 
historical period (1950–2005) both runs share the 
same simulation driven by estimates of historical 
greenhouse gas concentrations and natural forcin-
gs. Hence, there are no differences due to the initial 
conditions and all differences between the simula-
tions can be attributed to the applied forcing.

We calculated snow depth by accumulating 
snow depth changes, starting July 1st 1950, when 
the surface snow amount for all concerned grid-
boxes is 0.

The REMO data is processed analogously to 
the meteorological observations. We estimate the 
mean DOY of each gridbox via its next-neighbor 
of the phenological stations and calculate 45-day-
sums relative to these dates for all variables and 
years. We normalize these time series with respect 
to 1961-1990.

2.4 Statistical methods

Here we introduce the statistical models used in 
this study. There are excellent references for all of 
them, so we restrict this discussion to some general 
features and foundations of each method to point 
out their differences.  

In general, regression analysis aims at fitting a 
set of independent variables or predictors to a de-
pendent variable. Let y be a vector that contains I 
independent realizations of Y and X be a matrix that 
contains I row vectors xi of length J. Each xi con-
tains one realization xij per predictor Xj. Regression 
analysis aims at finding a prediction ŷ = E(Y|x). In 
general, ŷi won’t meet yi exactly. Instead, a predic-
tion error εi = yi – ŷi occurs. OLS and LAD employ 
an explicitly stated function, whose coefficients are 
to be estimated, to minimize a quantity based on 
all εi. Both assume a parametric model that allows 
to express the prediction as a linear combination of 
the predictors. Using matrix notation these can be 
written as ŷ = Xb, if the first column of X contains 
a constant factor 1 and b the regression coefficients 
b0, b1, …, bj.

The most common way to do this is OLS, which 
minimizes Si εi

2. The analytical solution to this 
problem is b = X(XTX)-1Xy. OLS dates back to C.F. 
Gauss and can be considered a cornerstone of sta-
tistics for more than a century. However, there are 
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Fig. 2: Correlations of  the predictors. See the text for the ap-
plied pre-processing. Abbreviations are due to the German 
meteorological service. TM: mean temperature; DD: vapor 
pressure; NM: cloudiness; PM: air pressure; RFM: relative 
humidity; FM: average wind speed; TX: maximum tempera-
ture; TN: minimum temperature; FX: maximum wind speed; 
RR: precipitation; SO: sunshine duration; SH: snow depth
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well known problems associated with it, of which 
we tackle several in this paper: due to the deri-
vation of its coefficients, OLS is heavily affected 
by outliers in the data. A relatively and absolutely 
small number of unusual values for Y might influ-
ence the fitted model in such a way that no use-
ful application is possible. Furthermore, all devia-
tions of the model are attributed to the dependent 
variable, while the predictors are considered true. 
Typically, this assumption is at least questionable 
when working with empirical data such as point-
measurements which are taken to be representative 
for a nearby, but not identical, location.

LAD is quite similar to OLS, in terms that it 
assumes the same underlying function. The differ-
ence is that LAD attempts to minimize the sum of 
the absolute error of predictions Si|εi|. Hence, LAD 
is significantly more robust towards numerical dis-
turbances in the data than OLS, which is of ad-
vantage in many real world applications (Portnoy 
and KoenKer 1997). There is no analytical solution 
for this, however, and iterative algorithms must be 
used. There might not even be a unique solution 
for the coefficients at all. See dielMan 2005 for a 
review.

The other type of regression considered uses 
a local, non-linear approach. Here, fitting is done 
without the constraints of an explicit model and 
hence more flexible. These approaches typically 
rely on a number of computationally expensive 
procedures like bootstrapping and random feature 
selection. The Random Forest (breiMan 2001) is a 
good example for this.

A random forest consists of a number (here: 
500) of classification and regression trees (CART, 
breiMan et al. 1984), built by sequential binary 
splitting of an independent bootstrap sample of 
the data into G groups or nodes, attempting to 
minimize Sg Si∈g ( yi – ŷg )2. Here the prediction ŷg is 
simply the mean of node g. The splits are based on 
a - at each node randomly selected - subset of the 
predictor variables. All nodes must contain at least 
five observations. When no more splitting is pos-
sible, the predictor space is divided into distinct 
and separated nodes. The tree estimates for the 
predictand are defined as the mean of the nodes. 
The estimates for additional data can be found by 
classifying it according to the splitting rules. RFO 
estimates of ŷ are then built as the mean of the tree 
estimates. Note that all predictions involved here 
aren’t continuous but rather stepwise functions, 
limited to the range of the training data, a point 
that tends to get overlooked by users.

2.5 Model comparison and validation

We focus on two quantities to characterize and 
compare the quality of our statistical models: The 
coefficient of determination R² represents the ex-
plained variance, hence the linear association of 
the independent variable and the predictions. R² is 
defined as the squared correlation of the observed 
anomalies of the DOY and the statistical models’ 
predictions. Further, to estimate the actual preci-
sion of the predictions, we use the root of the mean 
square error:

RMSE = i
2ε1I

i

− ∑ .

Also, statistical confirmation of a regression 
model is a crucial point if the estimated models 
are to be applied to an independent set of data. 
For OLS there is a huge number of well-designed 
procedures which allow - under some constraints 
- for statistical interference for each coefficient 
of a statistical model. However, there are by far 
less accepted inferential techniques for LAD or 
even for RFO. Therefore, in this paper, we pre-
fer to use an identical bootstrap approach for all 
methods.

We divide our data into two subsets for the 
training of the statistical models and their valida-
tion, respectively. For validation, we randomly se-
lect at least 25 phenological stations, representing 
at least 500 samples. Then, the statistical models 
are fitted to the rest of the data, called training 
data. We apply these models to the validation data 
and calculate the measures of model quality. This 
is repeated 1000 times. Note that this is an inde-
pendent bootstrap, not affecting the one of RFO, 
which is hence carried out 1000 times itself. This 
methodology allows us to give estimates for the 
uncertainty of the models’ coefficients even with-
out any prior knowledge or assumptions of their 
statistical distribution.

Note that each model is fitted using data 
from a great number of stations while other stud-
ies prefer to fit one regression per location (e.g. 
PriMacK et al. 2009) or to an areal mean (MenZel 
2003). At least in our study, this would lead not 
only to a loss in generalization but also to ob-
vious overfitting. Similar to regional frequency 
analysis (HoSKingS and walliS 1997), this is a 
way to capture the statistical relationships be-
tween climate variables and phenology in Bavaria 
rather than to model a number of specific time 
series of DOYs.



277F. Pollinger et al.: Comparison of  the performance of  three types of  multiple regression for phenology ... 2017

3 Results

3.1 Predictor subset

In Fig. 3 the results for out-of-the-box regressions 
with 4 and 13 variables are depicted. These fits use 
all available data. The scatterplots reveal that all six 
regression models result in very similar estimates for 
the anomalies of the DOY. As expected, the fits are 
better when more predictors are considered, however, 
the differences are small in terms of R² as well as of 
RMSE. The latter rises in all cases by about 0.3 days, 
while R² is reduced by approximately 3 %. Also the 
correlations between the model predictions ŷ are huge 
(OLS: 0.98, LAD: 0.96 and RFO: 0.97), hence we con-
clude that the fits for 13 and 4 predictors barely differ.

The estimates for LAD and OLS are nearly indis-
tinguishable and RFO performs better than the two 
parametric models. However, it is interesting that 
a small number of potential outliers can easily be 
identified in each of the panels of Fig 3. Therefore, 
none of the fitted models is able to include these, no 
matter which mathematical approach is considered 
or whether or not we restrict our analysis to a subset 
of variables.

3.2 Bootstrap evaluation

The results of the bootstraps are used to esti-
mate the consistency of our results. In the first step, 
we compare the overall performance of the statisti-
cal models using 4 as well as 13 predictors. Fig. 4 
displays the measures of model quality, together with 
an estimate of their errors. In terms of R² as well as 
RMSE, Fig. 4 indicates better results for RFO than 
for OLS and LAD for both sets of predictors. As 
this is true for both the training and validation data, 
we are confident that this is not a consequence of 
overfitting. So, the nonparametric approach appears 
more successful in grasping the meteorological ef-
fects on the DOY than the linear parametric models. 
As a restriction to this finding, it should be noted 
that the RFO bootstrap estimates show the largest 
spread, indicating that they depend more on the 
training data than the other ones. However, there is 
a considerable overlap of the margins of error for all 
three regressions, so that the results of the statistical 
models are altogether not that different. We also can 
conclude that a simple linear model is not without 
justification. Again, for OLS and LAD the results 
show barely any differences.
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Fig. 3: Scatterplots of  observed and simulated DOY anomalies of  the flowering of  Forsythia for three types of  regressions, 
using 13 (top) and 4 (bottom) predictors
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On average, all regressions explain more than 
50 % of the DOY’s variance, both for training and 
validation data. The mean RMSE is approximately 
9 days for all models, again RFO performs better 
than OLS and LAD. When only 4 predictors are 
taken into account, the performance of all regres-
sions drops, but only to a minor extend. On aver-
age, R² declines by 3 % and the RMSE increases 
by 0.3 days, so this subset of climate variables ob-
viously captures the bulk of relevant phenological 
information. Note that the RFO results in these 
cases are more similar to those of the parametric 
models, which we interpret as an indicator that the 
additional information from the 9 other predictors 
is mainly non-linear. 

A somewhat puzzling feature of Fig. 4 is that 
in some cases the validation data seems to perform 
better than the training data. This is a quite un-
common outcome of a bootstrap analysis, but can 
be explained by the spurious data depicted in Fig. 
3. Due to the selection algorithm, these are more 
often part of training datasets and hence affect 
those results more strongly. For RFO this is more 
pronounced than for OLS and LAD.  

3.3 Intermodel comparison

Fig. 5 shows results of the intermodel com-
parison. The correlation between the predictions 
of all regressions is very high, for OLS and LAD 
nearly perfect. Furthermore, as the mean RMSE 
of these regression models is only about 0.5 days, 
they appear to produce effectively the same es-
timates for the DOY anomalies. Note, however, 
pairwise correlations between the estimates of 

RFO and OLS/LAD are also very high, resulting 
in a mean R² of about 87 % when 4 predictors 
are used. The RMSE in these cases is somewhat 
higher, around 3.5 days, but nonetheless the es-
timates of the different regressions are obviously 
quite consistent. Again, these findings hold true 
for both the training and the validation data. For 
13 variables, the results are nearly identical, both 
in terms of the overall structure and the numeri-
cal values of R² and RMSE.  

For the parametric models, we can further ex-
plore the predictors based on their standardized 
partial-regression coefficients. While for 4 con-
sidered predictors, all are found to be significant 
for both parametric models, temperature – as ex-
pected – has the strongest effect on DOY. Here, a 
change of one standard deviation of temperature 
results in a change in DOY of about 0.65 stand-
ard deviations. Wind speed is found to have the 
second strongest effect, but compared to the im-
pact of temperature it clearly takes a backseat. The 
smallest effects are found for precipitation. An 
earlier occurrence of flowering is typically associ-
ated with positive anomalies for temperature and 
wind speed and negative ones for precipitation and 
snow depth, physical measures of a mild winter or 
an early onset of spring. These results are consist-
ent for OLS and LAD and don’t change much when 
13 predictors are considered. However, due to the 
pronounced correlation especially of the temper-
ature-based variables (see Fig. 2), the bootstrap 
analysis shows large variances for some key predic-
tors. These models aren’t used for the dynamical-
statistical modelling. For RFO, scatterplots of the 
predictions and each predictor variable indicate 
qualitatively equivalent relationships.
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predictors, respectively. Means +/- two standard deviations of  R² and RMSE from 1000 model fits.



279F. Pollinger et al.: Comparison of  the performance of  three types of  multiple regression for phenology ... 2017

3.4 RCM based estimates

Fig. 6 shows the mean development of the DOY 
in the considered model domain for 1950-2100. The 
gray zone in each panel marks the +/- 1 standard 
deviation of the time series of the DOY, calculated 
for the period 1961-1990, for which the means are 
all zero due to our normalization of the data. This 
area can be regarded as the range of typical differ-
ences in DOY between two subsequent years. In ad-
dition, Fig. 6 shows smoothed versions of each time 
series, which are less affected by REMOs interan-
nual variability.

A common feature for all time series is a pro-
nounced tendency towards earlier flowering dates 
until 2100 due to prescribed forcing. Also, no matter 
which regression is considered, the trend is stronger 
under RCP 8.5 than RCP 4.5. The segregation of the 
two scenarios becomes more obvious during the 
second half of the 21th century in accordance with 
the development of greenhouse gas concentrations. 
Additionally, the DOY time series for a scenario 
show very strong correlations between the three 
types of regression (correlation coefficients are at 
least 0.95), so short term fluctuations in the simu-
lated climate result in homogeneous phenological 
responses as well. While these overall tendencies 
are identical for all regression types, the estimated 
change in DOY is of considerable range. OLS ap-
pears to be the most sensitive. During the last 30 
years of the 21th century the DOY is projected to 
appear on average 14.8 (7.8) days earlier than dur-
ing the reference period under the RCP 8.5 (RCP 4.5) 
scenario. It should be noted, however, that for LAD 
the changes are only marginally smaller. RFO on the 
other hand is obviously less affected by the forcing. 

Here, the changes in the DOY are only -7.4 (-4.5) 
days under RCP 8.5 (RCP 4.5) by the end of the 21 
century. Thus, the ratio of the changes per scenario 
is well comparable to the one for OLS and LAD. 
Also these changes, albeit smaller than for the other 
regressions, are outside the estimated range of natu-
ral variability, since the standard deviation of RFO 
is clearly smaller than those of OLS and LAD. Also, 
as a response to the strong forcing of the RCP 8.5 
scenario, RFO’s standard deviation reduces signifi-
cantly, while there are no significant changes in the 
variability for OLS and LAD.

In Fig. 7, the spatial pattern of the changes 
in DOY until the end of the 21th century are dis-
played. Of course the overall picture is consistent 
with the results shown in Fig. 6. In general, for OLS 
and LAD the local changes of the DOY are a func-
tion of the applied forcing and statistical model. 
Hence, deviations from a spatial mean response for 
one gridbox tend to be of the same sign for RCP 4.5 
and RCP 8.5. For all combinations of these two fac-
tors, the mountainous areas appear to be subject to 
the most pronounced changes in DOY. The excep-
tions from this rule (notably in the southern part 
of Bavaria but north of the Alps) are most likely 
due to lakes situated in these gridbox. The differ-
ences between OLS and LAD as displayed in Fig. 7 
are more or less negligible, and in general a conse-
quence of the overall slightly stronger response of 
OLS. The changes in DOY for RFO are homogene-
ously smaller than for the other statistical models. 
Furthermore, especially for RCP 4.5, there occurs 
stronger scattering of the deviations from the spa-
tial mean change, which might be due to the greater 
influence of natural variability in comparison to 
the forcing. RCP 4.5-RFO is also the only combi-
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nation of forcing and statistical model for which a 
t-test doesn’t indicate significant changes in mean 
DOY with p < 0.01 for a number (about 10 %) of 
gridboxes. Thus, for RCP 4.5-RFO, a dot indicates 
significant changes in the DOY in Fig. 7 while we 
don’t use dots in the other panels. Altogether the 

interpretation of the spatial pattern of RFO based 
DOY changes is less straightforward and physically 
plausible than for the parametric models. Note that 
there is no focus on the mountainous areas. This 
probably rather unrealistic result is a consequence 
of the RFO’s estimates restricted range.
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3.5 Effects of  sample selection

Tab. 1 summarizes the effects of using more re-
strictive conditions for the selection of the data used 
for model fitting. We show results from the out-of-
the-box regressions, analogous to those depicted in 
Fig. 3. The gain of restricting the analysis to stations 
for which at least 30 years of data are available is mi-
nor compared to the one that arises from limiting it 
to phenological stations that are within 100 m eleva-
tion difference to their next-neighbor meteorological 
station. When 4 predictors are considered, the model 
quality overwhelmingly declines. The smallest data 
set – containing only one third of the originally used 
stations – shows the highest values for R². For RMSE 
Tab. 1 indicates overall best results when 84 stations 
are taken into account. Note, that all estimates are 
inside the ranges of uncertainty depicted in Fig.4. 

Also, the pairwise correlations of the predictions are 
at least 0.95.

More important in terms of this study are effects 
that might occur due to different mean DOYs used as 
reference for REMO. Altogether, these are very mi-
nor. All possible versions of Fig. 6 are virtually iden-
tical. Concerning the regional change in DOY, there 
are essentially no effects under RCP 4.5 for OLS and 
LAD. For RCP 8.5, we find somewhat stronger ef-
fects when at least 30 years of data are required. For 
Bavaria’s south-east and north-west we find differ-
ences up to 4 days, indicating that we might locally 
underestimate the trend in DOY as a consequence of 
calculating the mean DOY based on not enough ob-
servations. However, less than 4 % of the gridboxes 
show absolute changes of more than two days. For 
RFO regional change in DOY becomes even more 
homogeneous by excluding stations, but qualitative 

Fig. 7: Changes in DOY from 1961-1990 to 2071-2100 as simulated by the statistical-dynamical model. All changes are 
significant on the 1% level except for gridboxes in RCP4.5-RFO that are not marked by dot.
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and quantitative effects are neglectable (less than 
3 % of the gridboxes show changes of more than 
one day). Here, there are no apparent differences be-
tween RCP 4.5 and RCP 8.5.

4 Discussion

Given the overall results we conclude that our 
models succeed in their task to establish a robust sta-
tistical link between local climate conditions and the 
DOY of Forsythias flowering. As we are not aiming 
to predict the absolute DOY but rather model its var-
iation, our results are ready to use along with modern 
high-quality climate simulations. We find a strong, 
overall tendency towards earlier flowering mainly in 
accordance with the effects of rising temperatures 
during the 21th century. As a consequence, the risk 
of late frost events should increase. Considering 
Forsythia, the economic effects won’t be of much rel-
evance. However, it is highly likely that other plants, 
including field crops and fruit trees, will respond to 
climate change in a similar way and hence become 
more vulnerable to frost damages (e.g. cHMielewSKi 
et al. 2004; ricHardSon et al. 2012).

Concerning the predictor selection, our boot-
strap results indicate that the reduction to 4 predic-
tors didn’t affect the outcome of our study substan-
tially. The partial-regression coefficients indicate 
that early occurrences of blossoming are typically 
associated with the positive phase of the North 
Atlantic Oscillation (NAO), which is known to affect 
phenophases all over Europe (cHeMielewSKi and 
rötZer 2001). In the study area, the NAO strongly 
affects temperature and wind but has minor effects 
on precipitation (Hurrell 1995). Of course, all of 
these affect snow depth, but the latter is more of a lo-
cal aspect. However, our set of predictors might lack 
additional climatic information that may become 
more important under global warming conditions, 
such as the plants need for frosts before spring (e.g. 

cHuine et al. 1999; cHuine et al. 2016). In terms of 
the spatial pattern of changes in the DOY it should 
be considered that for mountainous areas not much 
observational data is available. However, the com-
bined effects of changes in mean temperature and 
snow depth taken into account, the stronger signal in 
the DOY in these regions seems plausible.

For climate change studies, our approach is a 
useful complement or even alternative to highly spe-
cialized processed-based phenological models, espe-
cially considering the results of the cross-validating 
bootstrap that is useful for uncertainty assessment 
(ricHardSon et al 2013). Another advantage is that 
the effects of errors in the phenological observations 
(larcHer 2006) are reduced simply due to the large 
number of observations available and spread over a 
large area. It is capable to deal with relatively short 
time series and heterogeneous terrain, as the uncer-
tainty induced by these issues clearly takes a back 
seat compared to the one associated with greenhouse 
gas forcing. 

As a major methodological question, we were 
interested in the comparison of the three different 
regressions. Given the results for LAD and OLS, it 
seems that we could have restricted our analysis to 
one of these as the results appear to be virtual identi-
cal while RFO results show notable differences to the 
parametric regressions. However, given the scope of 
this study, we elected to show the comparable results 
for all regressions. While, our data didn’t demand for 
a more robust approach than OLS, our results show 
that LAD is an alternative to OLS even if it is not 
required by the data. It could be argued that the spu-
rious data (Fig. 4, Fig. 5) should have been excluded 
from the analysis. However, we didn’t want to do so 
since we didn’t want to make such a stringent prior 
assumption. We also believe that the finding that all 
three types of regression fail in a similar way is an 
interesting aspect of our study: none, including the 
RFO, can deal with all possible structures of vari-
ation in the data. Nonetheless, RFO was found su-

Tab. 1: Measures of  model quality for all three regressions with 13 (4) predictors restricting the sample to phenological 
stations within a vertical difference of  100 m of  their next-neighbor meteorological station (first row), for which at least 30 
years of  data are available (second row), or both. The first (second) column indicates the number of  stations (observations).

R² in % RMSE (days)

stations sample OLS LAD RFO OLS LAD RFO

84 2292 57.2 (53.8)  57.1 (53.7) 61.1 (58.0) 8.3 (8.6) 8.3 (8.7) 7.9 (8.2)

37 1396 55.0 (50.9) 54.8 (50.9) 59.3 (55.3) 8.9 (9.3) 9.0 (9.3) 8.5 (8.9)

31 1172 59.3 (53.9)  59.1 (53.9) 62.8 (58.4) 8.3 (8.8) 8.3 (8.8) 7.9 (8.4)
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perior over parametric regression in different fields 
(e.g. SvetniK et al 2003; oliveira et al 2012) and we 
also found that it captured some minor climatic ef-
fects better. Our results, however, demonstrate that 
RFO, simply due to its definition, cannot respond to 
an appropriate extent to the applied forcing, but is 
limited to the observed range of the dependent vari-
able. It is stuck in the extreme values observed in the 
past, resulting also in a statistically significant reduc-
tion of variance during the 2071-2100 period. Hence, 
its use in statistical-dynamical approaches should be 
considered with great care. Especially the spatial pat-
terns of changes in the DOY simulated by OLS and 
LAD are considerably more in line with theoretical 
and empirical findings (e.g. ricHardSon et al. 2013) 
than those by RFO. Further, partial-regression co-
efficients allow for a relatively straightforward in-
terpretation of the statistical model. RFO measures 
such as variable importance (see breiMan 2001) are 
hereby less useful. If a relatively small number of pre-
dictors that all affect the predictand is considered – a 
situation commonly regarded desirable – the results 
barley differ for each variable. Also, neither qualita-
tive nor quantitative aspects of the relationships can 
be assessed directly. Regardless, parametric models 
might lose functionality as well when their predic-
tors are outside the range of the observations used to 
estimate the regression coefficients. And the contin-
uous advancement of flowering dates with increasing 
temperature is, of course, even physically impossible 
(e.g. cHuine et al 1999). Considering all results from 
the present study, however, parametric regression 
seems more useful for when it comes to analyzing 
the statistical model to time periods far beyond the 
one used for training the model. 

5 Conclusions

All three types of regression were capable of de-
tecting and modeling a robust statistical relationship 
between climate and the day of Forsythia suspensa flow-
ering using 4 or 13 predictors and explaining well 
over 50 % of total variance. The best model fits were 
achieved by the RFO for both sets of predictors. In 
terms of dynamical-statistical modeling, however, it 
is less able to respond to future climate change than 
OLS and LAD, damping the simulated signal. Rising 
temperatures are the main driver of the advancement 
of the DOY. While the overall tendencies of the sta-
tistical-dynamical models are plausible, it would be a 
useful alternative to have powerful dynamical veg-
etation modeling included in climate models.  
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